

Proposed Strategic Housing Development St Teresa's Temple Hill Monkstown Blackrock Co. Dublin

Main Drainage Planning Report

Job No: 2011-07 Date: December 2021 Prepared by: Marcus Wallace

1 0	ients Site Leastion and Brancool	2
1.0	Site Location and Proposal	ວ າ
1.1 1.2	Bronosal	ວ ວ
1.Z	Froposal	
2.0	Site Survey and CCTV	7
2.1	Foul Effluent	، ۲ ۵
3.0	Evisting Foul Network	۵
3.2	Proposed Foul Effluent	۵
4.0	Proposed Storm Water Proposals	
4.0 4 1	Soil Type	
4.1	Obar and Flow Control	
4.3	SuDS Proposals	13
4.4	Attenuation Proposal	
4.5	Other SuDS	
4.6	Blockages and Flood Routing	
4.7	Surface Water Audit	
5.0	Water Supply	20
6.0	Pre-application interactions	21
6.1	Irish Water	21
6.2	Dun Laoghaire Rathdown County Council (DLRCC)	21
7.0	Flood Risk Assessment	
8.0	Slope Stabilisation and Root Protection.	
8.1	Slope Stabilisation	
8.2	Root Protection	23
Figur	re 1 - Site Location Plan	6
Figur	re 2 - Existing Drainage Network – Irish Water	
Figur	re 3 - Surface Water Drainage Zones re 4 - Existing Watermain	
Figur	re 5 - Tree Root Protection	
Appe Appe Appe Appe Appe Appe Appe Appe	endix A – Greenfield Runoff Qbar – UK Suds endix B – Green Roof – Bauder Manufacturers Details endix C – Met Eireann Rainfall Data endix D – Attenuation Storage Proposals endix E – Storm Drain Calculations endix F – Storm Drain Calculations – 50% Blockage endix G – Hydro-brake Flow Control Details endix H - JBA – Flood Risk Assessment endix I – JBA – Surface Water Audit endix J – Irish Water Confirmation of Feasibility (COF) endix K – Irish Water Statement of Design Acceptance endix L – Irish Water Drawings, 4 Number Drawings endix M – Site Investigation Reports	

1.0 Site Location and Proposal

1.1 Site Location

The site is approximately 5km South East of Dublin City Centre and 2.4km North West of Dun Laoghaire. The entrance junction at Temple Hill, circa 0.59Ha is inside the red boundary line but is not included in the area for the drainage calculations for the development.

The overall lands are bound to the North by established residential development along Temple Hill with St Vincent's housing neighbouring to the East and The Alzheimer's Society of Ireland to the West. The Southern edge of the site is characterised by rich woodland park area which adjoins to the public park facility and network trails known as Rockfield Park.

Access to St Teresa's is from the Avenue that starts at Temple Hill Road, the avenue is also the access for St Catherine's Provincial House to the South.

1.2 Proposal

Oval Target Limited intend to apply to An Bord Pleanála for planning permission for a Strategic Housing Development on a site of c. 3.9 ha at 'St. Teresa's House' (A Protected Structure) and 'St. Teresa's Lodge' (A Protected Structure) Temple Hill, Monkstown, Blackrock, Co. Dublin.

The development will consist of a new residential and mixed use scheme of 493 residential units and associated residential amenities, a childcare facility and café in the form of (a) a combination of new apartment buildings (A1-C2 and D1 – E2); (b) the subdivision, conversion and re-use of 'St. Teresa's House' (Block H); and (c) the dismantling, relocation and change of use from residential to café of 'St. Teresa's Lodge' (Block G) within the site development area. A detailed development description is now set out as follows:

The proposal provides for the demolition (total c. 207 sq m GFA) of (a) a single storey return (approx. 20 sq m) along the boundary with The Alzheimer's Society of Ireland; (b) the ground floor switch room (approx. 24.9sq.m.), (c) ground floor structures northwest of St. Teresa's House (26.8sq.m), (d) basement boiler room northwest of St. Teresa's House (17.0 sq.m), (e) ground floor structures northeast of St. Teresa's house (22.0sq.m.) (f) basement stores northeast of St. Teresa's house (67.8 sq.m.) and (g) a non - original ground floor rear extension (approx. 28.5 sq m) associated with the Gate Lodge.

The new development will provide for the construction of a new mixed use scheme of 487 no. apartment units in the form of 11 no. new residential development blocks (Blocks A1-C2 and D1 – E2) as follows:

- Block A1 (5 storeys) comprising 37 no. apartments (33 no. 1 bed units and 4 no. 2 bed units)
- Block B1 (10 storeys) comprising 55 no. apartments (37 no. 1 bed units, 10 no. 2 bed units, 8 no. 3 bed units)
- Block B2 (8 storeys) comprising 42 no. apartments (28 no. 1 bed units, 9 no. 2 bed units and 5 no. 3 bed units)
- Block B3 (8 storeys) comprising 42 no. apartments (28 no. 1 bed units, 9 no. 2 bed units and 5 no. 3 bed units)
- Block B4 (5 storeys) comprising 41 no. apartments (4 no. studio units, 4 no. 1 bed units, 27 no. 2 bed units and 6 no. 3 bed units)
- Block C1 (3 storeys) comprising 10 no. apartments (1 no. studio units, 3 no. 1 bed units and 6 no. 2 beds)
- Block C2 (3 storeys) comprising 6 no. apartments (2 no. 1 bed units and 4 no. 2 bed units) together with a creche facility of 392 sq m at ground floor level and outdoor play area space of 302 sq m.
- Block C3 (1 storey over basement level) comprising residential amenity space of 451 sq m.
- Block D1 (6 storeys) comprising 134 no. apartments (12 no. studio units, 22 no. 1 bed units, 90 no. 2 bed units and 10 no. 3 bed units).
- Block E1 (6 storeys) comprising 70 no. apartment units (34 no. 1 bed units, 26 no. 2 bed units and 10 no. 3 bed units).
- Block E2 (6 storeys) comprising 50 units (1 no. studio units, 29 no. 1 bed units, 18 no. 2 bed units and 2 no. 3 bed units).

Each new residential unit has associated private open space in the form of a terrace / balcony.

The development also provides for Block H, which relates to the subdivision and conversion of 'St. Teresa's House' (3 storeys) into 6 no. apartments (5 no. 2 bed units and 1 no. 3 bed unit) including the demolition of non-original additions and partitions, removal and relocation of existing doors, re-instatement of blocked up windows, replacement of windows, repair and refurbishment of joinery throughout and the upgrade of roof finishes and rainwater goods where appropriate.

It is also proposed to dismantle and relocate 'St. Teresa's Lodge' (1 storey) from its current location to a new location, 180 m south west within the development adjacent to Rockfield Park. St. Teresa's Lodge (Block G) will be deconstructed in its original location and reconstructed in a new location using original roof timbers, decorative elements and rubble stonework, with original brickwork cleaned and re-used where appropriate. It is also proposed to dismantle and relocate 'St. Teresa's Lodge' (1 storey - gross floor area 69.63sq m) from its current location to a new location, 180 m south west within the development adjacent to Rockfield Park. St. Teresa's Lodge (Block G) will be deconstructed in its original location and reconstructed in a new location using original roof timbers, decorative elements and rubble stonework, with original brickwork cleaned and re-used where appropriate. A non - original extension (approx. 28.5 sq m) is proposed for demolition. The current proposal seeks a new extension of this building (approx. 26.8 sq m) and a change of use from residential to café use to deliver a Part M compliant single storey building of approx. 67.4 sq m

Total Open space (approx. 15,099.7 sq m) is proposed as follows: (a) public open space (approx. 11,572.3 sq m) in the form of a central parkland, garden link, woodland parkland (incorporating an existing folly), a tree belt; and (b) residential communal open space (approx. 3,527.4 sq m) in the form of entrance gardens, plazas, terraces, gardens and roof terraces for Blocks B2 and B3. Provision is also made for new pedestrian connections to Rockfield Park on the southern site boundary and Temple Hill along the northern site boundary.

Basement areas are proposed below Blocks A1, B1 to B4 and D1 (c. 7,295 sq. m GFA). A total of 252 residential car parking spaces (161 at basement level and 91 at surface level); 1056 bicycle spaces (656 at basement level and 400 at surface level); and 20 motorcycle spaces at basement level are proposed. 8 no. car spaces for creche use are proposed at surface level.

The proposal also provides for further Bin Storage areas, Bike Storage areas, ESB substations and switch rooms with a combined floor area of 356.2 sq m at surface level.

The development also comprises works to the existing entrance to St. Teresa's; the adjoining property at 'Carmond'; and residential development at St. Vincent's Park from Temple Hill (N31/R113). Works include the realignment and upgrade of the existing signalised junction and associated footpaths to provide for improved and safer vehicular access/egress to the site and improved and safer access/egress for vehicular traffic to/from the property at 'Carmond' and the adjoining residential development at St Vincent's Park.

Emergency vehicular access and pedestrian/cyclist access is also proposed via a secondary long established existing access point along Temple Hill. There are no works proposed to the existing gates (Protected Structure) at this location.

The associated site and infrastructural works include provision for water services; foul and surface water drainage and connections; attenuation proposals; permeable paving; all landscaping works including tree protection; green roofs; boundary treatment; internal roads and footpaths; and electrical services including solar panels at roof level above Blocks A1, B1 - B4, C1-C3, D1, E1, E2.

Figure 1 – Proposed 493 Units

2.0 Existing Drainage Network

2.1 Site Survey and CCTV

Surface water from St Teresa's is currently conveyed through the combined sewer network within the site boundary. The public surface water drainage network on Temple Hill Road conveys storm water West to discharge onto the culverted Carysfort-Maremtimo stream. The site generally drains South-East to North West.

Foul water from St Teresa's is currently conveyed through the combined sewer network within the site boundary. Temple Hill Road is served by a 1200mmØ combined sewer. The combined sewers within St Teresa's Lands discharges to the 1200mmØ combined sewer in Temple Hill Road. This trunk main is routed to the Dun Laoghaire West Pier pumping station where it is pumped to Ringsend Waste Water Treatment Works.

There is an existing 900Ø combined sewer running along the west boundary of the site, it will be diverted locally on the North West corner of the site to avoid the new basement under block A1.

Figure 2 Existing Drainage Network (Irish Water records 16.01.2018)

3.0 Foul Effluent

3.1 Existing Foul Drains

Three existing drainage pipe runs were identified as originating outside the site and possibly serving areas or buildings outside the site.

The first is a 225mm diameter uPVC pipe which runs south to north along the western boundary of the site. This pipe is indicated on Irish Water records as Foul or Surface water along different lengths of the pipe and probably discharges to the Maretimo stream. It is not proposed to interfere with this pipe as part of this proposed development.

The second pipe is a 150mm diameter foul drain that runs south west to north east from the south eastern boundary of the site. This pipe probably serves the adjoining St. Catherines House and it appears to connect to the drainage systems serving the existing buildings on the St Teresa's site. This pipe is not on Irish Water record drawings and it is not known if it serves buildings outside the subject site. Provision has been made in the foul water drainage design to route any flows from this pipe through the proposed development to the local authority sewer in Temple Road. There is also a 900mm diameter combined sewer which flows south to north along the entrance to St. Louise's and The Alzheimer's Society and then joins a 900mm diameter pipe flowing southeast parallel to Temple Road at the north entrance to the site. This pipe flows through the proposed footprint of building A1. It is proposed to divert this pipe away from building A1. These existing pipes are indicated on J.J.Campbell & Assoc. drawing numbers C2-0 – overall site plan, C2-1, C2-3 and C2-5 partial site plans.

Any other drains encountered during construction will be traced to source to discover if they are live; if they are live, they will be connected into the proposed drainage system in order to conduct the existing flows to the public sewer in Temple Road. If the pipes prove to be redundant, they will be grubbed up and removed from under buildings and structures and any remaining pipes left in the ground will be stopped and allowed remain in place.

3.2 Proposed Foul Effluent

The proposed St. Teresa's SHD comprises of 493 units in residential units total and conversion of gate lodge into a small Café.

Adopting the loading provided in the Irish Water guidance document Code of Practise for Wastewater Infrastructure (Ref: IW-CDS-5030-03 Dec 2016) section 3.6 the foul effluent discharging from the site is estimated at:

5 Story -37 Units: Block A1 – (447L/D/day x 37 Units x 6DWF) / (24x60x60): 1.2L/Sec Block B1 -10 Story -55 Units (447L/D/day x 57 Units x 6DWF) / (24x60x60): 1.8L/Sec Block B2 -8 Story -42 Units (447L/D/day x 42 Units x 6DWF) / (24x60x60): 1.3L/Sec Block B3 -8 Story -42 Units (447L/D/day x 42 Units x 6DWF) / (24x60x60): 1.3L/Sec Block B4 -5 Story -41 Units (447L/D/day x 41 Units x 6DWF) / (24x60x60): 1.3L/Sec Block C1 -3 Story -10 Units (447L/D/day x 10 Units x 6DWF) / (24x60x60): 0.31L/Sec Block C2 -3 Story -6 Units (447L/D/day x 6 Units x 6DWF) / (24x60x60): 0.18L/Sec Block C3 -2 Story -Amenity (447L/D/day x say 6 Units x 6DWF) / (24x60x60): 0.18L/Sec Block D1 -6 Story -134 Units (447L/D/day x 134 Units x 6DWF) / (24x60x60): 4.2L/Sec Block E1 -6 Story -70 Units (447L/D/day x 70 Units x 6DWF) / (24x60x60): 2.2L/Sec Block E2 -6 Story -50 Units (447L/D/day x 50 Units x 6DWF) / (24x60x60): 1.6L/Sec St Teresa House 6 Units (447L/D/day x 6 Units x 6DWF) / (24x60x60): 0.18L/Sec Gate Lodge: Café 2 staff @ 15L/person/day: 30L/day 150 patrons @ 60L/person/day: 9000L/day Total: (30 + 9000) x 6DWF / 24x60x60: 0.63L/Sec Total discharge to public sewer: 16.38L/Sec Sewers within the development will be typically be laid at;

Main collector Sewer:DN225 not flatter than 1:80Secondary Sewers:DN225 not flatter than 1:60

Design falls are called up on longitudinal section drawings C2-10 and C2-11. Invert and cover levels are called up on drawings C2-0 to C2-6.

Self-Cleansing Velocity

See ISEN 7524 (1998) Part 4. - Drain and sewer systems outside buildings Hydraulic Design Clause 8 Self Cleansing Velocity.

For small diameter drains and sewers less than DN 300, self-cleansing can generally be achieved by ensuring that a velocity of at least 0.7 m/s occurs daily or that a gradient of 1:DN is specified

Outfall Connection

The foul drain will connect to the existing 300Ø combined sewer located within the site boundary on Temple Road, it then discharges to an existing manhole on the public 1200Ø public combined public sewer.

4.0 Proposed Storm Water Proposals

It is proposed to separate the storm runoff from the existing and proposed buildings and to use SuDS techniques, as per the Greater Dublin Strategic Drainage Study (GDSDS), to control stormwater discharge from the site. The proposals are set out in detail below. A storm water carrier pipe will be provided around the site to intercept runoff and, where located within filter drains, will be perforated pipe.

Because of the sloping topography of the site, it is proposed to make two surface water connections serving two zones each comprising approximately 50% of the site area.

Surface Water Connection No 1 is for Zone 1 and connects to the existing public sewer 9002 on the North East side of the site.

Surface Water Connection No 2 is for Zone 2, 50% of the propose development and connects to the existing public sewer manhole on the North corner of the site.

The collection system has been assessed with a view to minimizing excavation depths, in circumstances where, due to the nature of the site, some deep pipe runs are necessary. Invert levels have been set to minimize trench depths while maintaining pipe velocities.

Figure 3 Surface water drainage zones.

4.1 Soil Type

The UkSuds web site tool for estimating the Greenfield run rate was used to check for the soil type, which it gave as Soil Type 4. However, the Site Investigation Report, included as Appendix M, showed that 50% of the soakaway tests passed and 50% had poor / failed, and on a conservative basis, a worse case soil Type 3 has been assumed for this project and an SPR (Standard Percentage Runoff) of 0.37.

4.2 Qbar and Flow Control

At the request of DLRCC Drainage Department, Qbar (net) and not Qbar (whole site) was used to calculate the allowable discharge from the positivity drained areas such as roads, roof's, etc, see drawing C3 for area calculations.

As recommended by DLRCC, Q_{bar} was assessed using the UK Suds online tool. Soil type 3, SAAR (Average Annual Rainfall) 900mm and an area of 2.1189Ha giving an allowable discharge for the positively drained areas of 8.17 l/s, see Appendix A.

Storage volume was calculated using rainfall data provided by MET Eireann for the site. This data is reproduced as Appendix C in this report.

An attenuation volume of 1600m³ is provided for the whole site. This storage is divided between a "stormtech" below-ground attenuation structure, situated adjacent to buildings E1 and E2, providing 800m³ of storage and a reinforced concrete tank beside B2 under the road, also providing 800m³ of storage. As these storage systems are connected independently to the local authority collection system, each connection is provided with a flow limiting device (Hydro-brake) set at 4.1 l/s so that the total flow from the site is 8.2 l/s.

Utilising the on-line Hydro International design tool for assessing hydro-brakes and assuming a maximum head of 1.4m for the Stormtech and 2.11m for the concrete tank, the appropriate hydrobrake has been designed as set out in Appendix G. The Hydro International drawings show a bypass valve but the hydro-brake shall be ordered without a bypass which is specified on attenuation drawings C6-2 and C6-3.

4.3 SuDS Proposals

The design proposals are based on the GDSDS guideline document and on the Development Plan 2016-2022 policy requirements, and in particular policy E18 in Section 5: Sustainable Drainage Systems;

A green roof is proposed on the apartment blocks, at a minimum of 60% of the flat roof surface area, and will be installed as per Appendix 16 in Dun Laoghaire Rathdown Development Plan 2016 – 2022. See drawing C11 for calculation of areas. The green roof will be the Bauder system, or similar, details of which are included in Appendix B to this report. This system allows for the installation of photovoltaic panels above the green roof without loss of effective area of the roof. The green roof will be connected to the new surface water system.

Access to the roofs for maintenance will be via the automatic opening vents at the top of the stairwells in each building. Secondary access to the roofs will be by a cherry picker from the adjoining roads for maintenance.

• **Dry swales / infiltration trenches** are a useful and natural means of surface water collection and treatment of the first 5mm of runoff. The application of swales / infiltration trenches was examined as part of the design process. Because of the mature trees, to be retained as part of the development, the widespread use of swales cannot be implemented as the necessary trenches would damage the tree root systems, but swales / infiltration trenches shall be installed where they do not damage existing mature trees, see C2 and C7 for locations.

Similar issues could potentially arise regarding traditional pipe drainage in trenches, however, the piped drainage system for the development site has been designed to avoid heavily rooted areas, particularly along the main access avenue. It is anticipated that the road surface along the access avenue will be replaced as part of the development. As part of the surface replacement works, a cross-fall will be incorporated into the road surface so that rainwater will be directed onto landscaped areas and thereby flow overland to the drainage system. This ensures that low intensity rainfall on the avenue will not reach the drainage system as it will be infiltrated directly into the soil and that any water reaching the drainage system will have a degree of pre-treatment before entering the drainage system. Provision has been made at two key points along the avenue to collect water from the road surface in order to prevent flooding on the avenue from significant rainfall events.

• **Permeable paving** will intercept the first 5mm of runoff from all impermeable areas of the site. 50% of the onsite soakaways passed and 50% had poor / failed infiltration, a high level

perforated overflow pipe will be provided from the permeable pavements and will connect to the new gravity storm network, some infiltration will take place in the stone below the areas with poor / failed infiltration and the overflow pipe will retain flow which will slowly infiltrate or evaporate.

- Because of the sloping topography of the site, Suds / attenuation has been divided into 2 separate Zones:
 Zone 1, south end of the site has 50% coverage, Stormtech or similar below-ground attenuation structures will be used to attenuate the 100yr storm event.
 Zone 2,northern end of the site has 50% coverage, attenuation tank located beside building B2 will be used to attenuate the 100yr storm event.
- 20% increase in rainfall rates, as provided by Met Eireann, will be incorporated into the design to allow for climate change. See Appendix C for rainfall data

In accordance with the GDSDS the criterion requirements as set out in Table 6.3 are to be complied with in the following manner;

 Criterion 1 – River Water Quality Protection: Criterion 1 is achieved by the interception storage of at least 5mm of rainfall where runoff to the receiving water can be prevented. CIRIA Report C753 defines Interception as the capture and retention on site of the first 5mm of the majority of all rainfall events.

Interception areas are broken down into Zone 1 and Zone 1 and are further broken down into 13 separate areas on drawing C7.

As the interception volume is provided, no further treatment volume, Vt is necessary for this development (ref. GDSDS volume 2, chapter 6, table 6.3).

Extensive Geen Roofs (Bauder):

CIRIA Report C753, Table 24.6 states that all surfaces that have green roofs meet Criterion 1. All new building within the development have minimum 60% green roofs, the non-green element of the green roof shall discharge to the green roof areas. Bike sheds, bin store sheds, ancillary buildings etc. all have 100% green roofs, see drawing C11.

The green roofs also have a storage of:	
60% Green Roof (See drawing C11):	3955m²
Soil:	0.029m³/m²
DSE60 Drainage Layer:	0.013m³/m²
Fleece:	0.003m³/m²
Total Storage: 0.045m³/m² x 3955m² =	178m³

Permeable Paving:

CIRIA Report C753, Table 24.6 states that all permeable paving, whether lined or not can be assumed to comply, provided there is no extra area drained to the permeable pavement.

Where the pavement also drains an adjacent impermeable area, compliance can be assumed for all soil types where the pavement is unlined, as long as the extra paved area is no greater than the permeable pavement area.

Where the infiltration capacity of the ground below the pavement is greater than $1x10^{-6}$ m/s, up to 5 times the permeable pavement area can be added as extra contributing area.

Drawing C7, Interception Areas, shows the interception areas broken down into 13 areas. The maximum ratio of impermeable pavement to permeable paving is 1:5 where the infiltration capacity of the ground below the permeable paving is greater than $1x10^{-6}$ m/s.

50% of the soakaway tests passed and 50% of the soakaways had poor / failed infiltration. The locations where infiltration is poor, some infiltration will take place along with evotranspiration. The ratio of impermeable paving to permeable paving ranges from 1:0.25 to 1:3.5, see drawing C7 which also gives storage in the permeable paving.

Total Storage: 1409m ² x 0.35m x 30% voids =	148m³
350 stone sub-base:	30% voids
Area, See drawing C2:	1409m²
Permeable paving also has storage of:	

Dry Swale / Infiltration Trench

CIRIA Report C753, Table 24.6 states that areas up to 25 times the base plan of the basin can be assumed to meet interception requirements where infiltration rates are greater than $1x10^{-6}$ m/s.

Where the infiltration is poor, some infiltration along with evotranspiration will take place in the infiltration trench which is filled with stone with 30% voids. The ratio of impermeable paving to base plan of swale ranges from 1:6.2 to 1:23.4, see drawing C7.

Dry swales / infiltration trenches also have storage of				
See drawing C2, C2-7 and C7	126m			
Total Storage: 126m x 1m x 0.6m x 30% voids =	23m³			

Interception storage provision will be for 5mm rainfall over 80% of hard standing areas on the site. Landscaped areas, Green roofs and permeable paving satisfy this requirement for those paved or green areas.

Interception storage will be provided equivalent to the first 5mm of rainfall falling on remaining impervious areas.

Interception volume is required to cater for 5mm rainfall on 80% of paved (impervious) surfaces.

Roofs / incl. balconies:	12,489 m²
Roads:	5,200m²
Parking:	1332m²
Paths:	<u>2300m²</u>
Total contributing area =	21,321m²
Interception volume required = 21,321 * 0.8 *.005 =	85.3m ³ < 349m ³ provided.

- Criterion 2 Storage/attenuation volumes will be assessed using Criterion 4.3
- **Criterion 3** there will be no flooding on site for the 30 year storm and no property flooding for the 1 in 100 year storm. FFL levels will be a minimum of 500mm above TWL;
- **Criterion 4** Criterion 4.3 is used assessing attenuation for all storage using the pass forward control of Qbar of 8.17l/s for the whole site.

4.4 Attenuation Proposal

The overall storage requirement for the development is 1600m³ for the 100yr storm event, see attached calculations in Appendix D.

For the sake of completeness, it should be noted that the possibility of attenuating the storm water greater than the 30 year volume in attenuation ponds has been examined. However, having considered the possibility, attenuation ponds are not proposed because the site geometry is not conductive to the hydraulic design of such ponds. If attenuation ponds were to be used, it would be necessary to pump stormwater into any attenuation pond on the site and consequently control the release of waters when the drainage system has capacity to receive them, if the pumps fail or there is a power cut during a storm event it would cause extensive flooding.

Thus, the chosen option if that the stormwater volume from a 100 year event will be stored in underground attenuation structures on the site. The attenuation structures have been checked for flotation and for structural integrity under the loads that are predicted in service and during construction.

Because of the topography of the site it has been divided into 2 separate Zones, see 4.3 above.

Zone 1:

Below ground attenuation structure50% of Site and 100 yr storage required:800m³Zone 2:Attenuation tank below building B150% of Site and 100 yr storage required:800m³

Pass forward Q = 8.17I/s/2 for whole site = 4.1I/s for Z1 and 4.1I/s for Z2

The storage calculation is attached in Appendix D and allows for 20% climate change for the 100 year storm return.

4.5 Other SUDS features.

The alternative of normally dry attenuation ponds was examined for retention of exceptional rainfall. These ponds would be designed to begin to fill when the below ground attenuation storage required for the 30 year rainfall event had reached and would provide attenuation storage at surface level for events up 100 year return period. However, in order for these ponds to function effectively, the drainage system must be able to overflow into them before it overflows anywhere else; the system is allowed to flood into the dry basin before flooding occurs elsewhere. For this to happen, the basin/pond must be situated at the low point of the site. As the available area for such a pond is at the high point of the site, flooding could occur in low lying areas before the attenuation pond would activate. For this reason dry attenuation basins were not adopted in the design.

Issues arise regarding traditional pipe drainage in trenches similar to the inclusion of swales, however, the piped drainage system is designed to avoid heavily rooted areas, particularly along the main access avenue. It is anticipated that the road surface along the access avenue will be replaced as part of the development. As part of the surface replacement works, a cross-fall will be incorporated into the road surface so that rainwater will be directed onto landscaped areas and thus by overland flow to the drainage system. This ensures that low intensity rainfall on the avenue will not reach the drainage system as it will be infiltrated directly into the soil and that any water reaching the drainage system will have a degree of pre-treatment before entering the drainage system. Provision has been made at two key points along the avenue to collect water from the road surface in order to prevent flooding on the avenue from significant rainfall events.

4.6 Blockages and Flood routing.

The effect of blockages occurring at critical points in the system was examined in order to ensure that any flood flows will be away from buildings. The locations chosen and consequential flows are listed below.

Event	Consequence
1. The outlet hydrobrake at the attenuation tank for drainage zone 2 blocks.	Outlet manhole cover will rise due to water pressure, causing flooding and overland flows from the manhole towards the Maretimo stream. Ground levels and kerbs direct overland flow away from buildings A1 and B1.
2. The inlet manhole to the attenuation tank for drainage zone 2 blocks.	The inlet manhole cover and the manhole adjacent to building E1 are most vulnerable to rising due to water pressure due to site levels. Overland flow from these manholes will be

	away from buildings and towards watercourses.
3. The inlet or outlet manholes serving the stormtech attenuation structure for drainage zone 1 blocks.	The most vulnerable manholes, those with lowest cover levels, are those adjacent to building B4 and that at the Main entrance to the development. If water backs up sufficiently for any of these manhole covers to leak, the overland flow will be away from building B4, towards Temple Hill road.
4. A 50% blockage of the hydrobrake serving zone 1 was modelled using Causeway software.	The analysis indicates that the collection system will surcharge for a number of storm criteria, however a minimum of 300mm freeboard will be maintained at all manholes and there is no risk of flooding indicated by the analysis.
5. A 50% blockage of the hydrobrake serving zone 1 was modelled using Causeway software.	The analysis indicates that the collection system will surcharge for a number of storm criteria, however a minimum of 300mm freeboard will be maintained at all manholes and there is no risk of flooding indicated by the analysis.

Drainage analysis results for zones 1 and 2 are presented in Appendix E and F.

4.7 Surface Water Audit

An independent audit of the surface water design was carried out by JBA Consulting Engineers, see Appendix I.

5.0 Water Supply

The site is served by 2 No. 100Ø water main spurs which are connected to an existing 400Ø watermain in the path that runs along Temple Road – see Figure 5.1 below.

Figure 4 Existing water main.

A 200mm I.D. MDPE pipe (type PE 80 and SDR 11) will be provided, looped around the development to serve each unit. Fire hydrants will be provided to ensure that no unit is more than 46m away from an accessible hydrant.

The average domestic daily demand is 150I/hd/day and 2.7 persons/dwelling gives a demand of 199,665/day. The peak demand is $1.25 \times average = 249,581 I/d$

In accordance with Irish Water Code of Practise for Water Infrastructure s2.6.7, where flow is more than 20m³ per day there is a requirement to fit a bulk meter to measure the water demand of the development

6.0 Pre-application interactions

6.1 Irish Water

Proposed 493 Unit Scheme

A new pre-connection enquiry for 521 Units was issued to Irish Water on 17th April 2020 and acknowledgement email received on 20th April 2020, reference number 0883622. A confirmation of feasibility, letter reference CDS20002536, dated 10th June 2020 has been received and is included herewith as Appendix J.

An application for a "Statement of Design Acceptance" was made to IW on the 25th February 2021 and confirmation of acceptance was received on the 8th August 2021, reference number CDS20002536, see Appendix K.

6.2 Dun Laoghaire Rathdown County Council (DLRCC)

An online, pre-application meeting was held in relation to the 493 unit proposed development.

7.0 Flood Risk Assessment

A Flood Risk Assessment has been carried out by JBA for the 493 unit scheme, see Appendix H.

Summary:

In 2011 the North West corner of the site flooded to a depth 0.25m, 40m into the site of the proposed development.

The recently installed concrete flood defence wall along the Carysford – Maretimo now gives flood protection for the 1:100 year storm event.

The flood risk assessment predicts a level of 12.75m o.d. for the 1:1000 year flood event. The ground floor level of the lowest building, Building A1, has been set at 13.15m o.d., i.e. 400mm above predicted flood level. All other ventilation openings to the basement of building A1 will also be set at 13.15m o.d., or higher.

The entrance level to the basement carpark has also been set at this level. All drainage from the carpark will be pumped in order to prevent any backflow from flooding the basement.

Vehicular access to the residential units is from the new entrance on the North East corner of the site and not from the existing entrance in flood zone A. Pedestrians can also access the residential units from the East and do not have to cross flood zone A. In the unlikely event of flooding vehicles and pedestrian can safely access all the residential units and underground car parks.

8.0 Slope stabilisation and root protection.

8.1 Slope stabilisation.

The stepped landscaped area at block B4 and Temple Hill Road will be set out as grassed terraces. The average slope of the area is about 1m fall in 10m, however, as the area will be terraced, there will be local slopes in the region of 1m fall in four. In order to stabilise the soil in this area and to prevent erosion, a geogrid product, Terram Geocell, or similar, will be used to stabilise the surface.

8.2 Root protection.

The main access avenue and the access route through the site to lands to the south of the site are to be constructed adjacent to the root systems of mature trees. The roots under these roadways will be protected from traffic loads by constructing a relatively thin concrete slab, (in the region of 225mm), supported on insitu mass concrete columns or piles at close centres, see drawing C5 for details. The loads will be transferred through the slab to the piles and thus to the soils below the root zone. A number of footpaths and jogging routes are proposed through existing wooded areas. These paths

will also accommodate light maintenance traffic. The existing root zones will be protected by using proprietary products such as Terram Geocell to bind the base materials, thereby providing an all-weather surface that is not prone to rutting or heave under light wheel loads. The relevant areas are indicated below.

Figure 5 Protection in roads shown green, root protection in paths shown blue, embankment stabilisation shown purple.

Appendices

Appendix A – Greenfield Runoff Q_{bar} – UKSuds.com Website

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by: Marcus Wallace			Site Details						
Site name:				Latitude: 53.2969					
Site name: Temple Hill					6 17260° W				
Site location:	Black	rock					Longitude.	0.17302 VV	
This is an estimation of in line with Environme SC030219 (2013), th (Defra, 2015). This inf the drainage of surfac	of the greent Agenc ne SuDS Mormation cormation	enfield rund y guidance Manual C7: on greenfie unoff from	off rates th e "Rainfall r 53 (Ciria, 2 eld runoff r sites.	at are used runoff manag 2015) and the ates may be	to meet norm gement for de e non-statuto the basis for	al best practice criteria velopments", ry standards for SuDS setting consents for	Reference: Date:	253983227 Sep 27 2021 15:47	
Runoff estimati	on app	roach	IH124						
Site characteris	stics				-	Notes			
Total site area (ha)	2.11	89				(1) IS $Q_{BAB} < 2$	0 l/s/ha?		
Methodology									
QBAR estimation method: Calc			ulate from SPR and SAAR			When Q _{BAR} is	When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set		
SPR estimation method: Calci			late from SOIL type			at 2.0 l/s/ha.			
Soil characteris	stics	Defaul	t	Edited					
SOIL type:		4		3		(2) Are flow rat	es < 5.0 l/s?		
HOST class:		N/A		N/A					
SPR/SPRHOST:		0.47	0.37			usually set at 5.0 l/s if blockage from vegetation and other			
Hydrological ch	naracte	ristics	Defa	ult	Edited	materials is po	ssible. Lower con	sent flow rates may be set	
SAAR (mm):			900	900		drainage elements.			
Hydrological region:			12		12	(3) Is SPB/SPF	2HOST < 0.32		
Growth curve factor 1 year:		ar:	0.85		0.85				
Growth curve factor 30 years:		2.13		2.13	Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.		w enough the use of		
Growth curve factor 100 years:		2.61		2.61			water runoff.		
Growth curve factor 200 years:			2 86		2.86				

Greenfield runoff rates	Default	Edited	
Q _{BAR} (I/s):	13.73	8.17	
1 in 1 year (l/s):	11.67	6.94	
1 in 30 years (l/s):	29.24	17.4	
1 in 100 year (l/s):	35.83	21.32	
1 in 200 years (l/s):	39.26	23.36	

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme. Appendix B – Green Roof – Bauder Manufacturers Details

OUR COMPANY

Who We Are

Bauder is one of Europe's leading manufacturers of flat roof waterproofing membranes and insulation products that has been owner-operated for over 150 years across 13 countries. We have an enviable reputation and track record for delivering the highest quality materials and service through supplying and project managing the installation of premier flat roof systems.

Our comprehensive portfolio of flat roof waterproofing systems, green roofs and photovoltaic energy delivers an extensive range of solutions to meet individual project needs without compromise.

"Manufacturing the highest quality roofing materials is one thing, but here at Bauder it is our total commitment and passion to work closely together with our clients to successfully deliver every product to the highest possible standard, that sets us above the test."

A. d. Marmo.

Andrew Mockenzie Managing Director Bauder Ltd

What We Do

Bauder is fully committed to providing a complete service with an unrivalled level of support on all roofing projects, whether it's for a new build project or the refurbishment of an existing building.

Technical Expertise

Our large team of regionally based technical managers and site technicians will be on hand throughout the process, from specification design through to inspection of the installation and project completion to ensure a defect free finish.

Our technical department is the envy of the industry, providing a comprehensive and superior service with bespoke specifications individual to each project. Our support services ensure that products and materials all arrive on site when required providing an efficiency that all our clients demand.

Assured Quality

To ensure a consistent and proficient service, Bauder approved contractors are the only people fully trained and certified to install our products. We only approve contracting companies that possess the technical expertise and the organisational capacity to maintain an efficient and well-run site.

We have always operated a policy where we train and approve the individual installer and not just the company they work for. By taking installers with proven experience and demonstrating the techniques particular to our system, we can ensure the quality of workmanship that meets our clients' expectations.

Every operative receives an identity badge providing proof of competence, which is available for inspection at all times.

Guaranteed Satisfaction

Bauder is noted throughout the industry for the range of guarantees we offer that can cover design, products and installation. We unreservedly issue our guarantees on all projects because we monitor quality every step of the way from manufacture to finished installation.

2 bauderie

GREEN ROOF SYSTEMS

Each green roof brings back a piece of nature and on some buildings a recreational space can be created for people to access and enjoy.

A Bauder green roof combines the finished planting scheme and all its supportive components with a high quality and secure waterproofing system to give you the best results every time.

Designing a green roof can be complex and your local technical manager is best placed to advise you on the implications your green roof will have on the building and its construction as well as the ongoing maintenance of the vegetation and roof.

We have produced a design considerations guidw for green roofs which can be downloaded from our website.

bauder.co.uk/technical-centre/design-guides

Recreational Gardens, Terraces and Spaces Accessed Intensive Green Roofs

Rooftops where the design may include flowerbeds, lawns, shrubs and trees intermixed with paths, driveways and patios. The combinations of finishes will impact on the design, construction, drainage and components used to deliver to each element's requirements.

Sedum System Non-Accessed Extensive Green Roof

Lightweight, all in one vegetation system comprising mature sedums pre-grown on an integrated multifunctional water retention and filter layer with 20mm of extensive substrate. The system has been developed for use directly over the waterproofing without the need for a secondary layer of substrate.

Substrate Roofs

Non-Accessed Extensive Green Roofs

Substrate green roofs are designed to be comparatively lightweight, work towards providing some storm water mitigation and support a wide variety of low maintenance plant species which are generally self-sustaining, and wind, frost and drought tolerant. They are primarily used for their ecological benefits and not intended for general access or for leisure purposes.

Biodiverse Habitats

A natural living habitat to encourage a wider spread of birds, insects and plant species into the area and generally replicates the ecological environment of the site upon which construction development is taking place, particularly if a Biodiversity Action Plan (BAP) is to be met with priority species.

Precultivated Vegetation Blankets

Lightweight option with precultivated vegetation for instant planting of the roof. Two options are available, XF118 wildflower blanket contains a mixture of 24 species of annual and perennial native wildflowers and XF300 incorporates perennial sedums with some grasses and mosses.

Plug Planted Systems

Individually planted roof usually incorporating sedums, grasses, herbs, succulents and wildflowers. These can be planted to accommodate location and expected weather conditions, colour or layout designs to the client's preference.

Seeded Roofs

The vegetation is grown and colonised entirely on the roof from seed with full plant establishment taking between 18-24 months. The plant selection can incorporate native and priority species to gain BREEAM points and meet a BAP.

BioSOLAR Roofs

Combining a substrate green roof with a solar PV array where the substrate and vegetation provide the ballast for the installation. The mounting system raises the modules above the substrate to allow liberal growing room for the plants, which are specified explicitly so that their maximum height does not block light to the array that would otherwise reduce the efficiency of the panels.

ENVIRONMENTAL CREDENTIALS 🥥

Alding Biodiversity and Meeting a Biodiversity Action Plan (BAP)

A green roof can provide a natural habitat specifically designed to support a particular species of plant or wildlife. Created for the local ecology, in which vegetation will establish and provide a home for smaller elements of wildlife as well as insects and invertebrates. The provision of a healthy habitat in a place that could otherwise be empty encourages wildlife to remain in the area, provides support for the natural colonisation of locally arising plants, birds and small animals, boosting a wider spread of species in the area.

Our vegetation options include our XF118 wildflower blanket and Flora Seed Mixes, which are all specifically devised to meet BAP criteria through their inclusion of species within the RHS 'Perfect for Pollinators' and Flora Locale 'native origins criteria'.

Storm Water Management

Green roofs are one method of retaining rainwater by inception storage in the substrate, drainage/reservoir board and plants. This water is then used by the vegetation or evaporates back into the atmosphere.

Improving Air Quality of Local Surroundings

Localised air quality is improved as the vegetation assists in reducing both gaseous pollutants and dust particles by removing a proportion of them from the immediate environment, effectively purifying the air.

Urban Heat Island Effect

The urban heat island effect is reduced because the substrate of a green roof will absorb some of this heat and the natural evaporation of water from both the plants and soil helps to cool and humidify the air, thus lowering the ambient air temperature.

Recycled Content of Green Roof Components

Many recycled or waste materials are used within our green roof build ups to enable us to provide environmental solutions to the industry.

Water Retention and Drainage Layers

Our DSE 20, 40 and 60 boards are manufactured from recycled high density polyethylene.

Protection Layers

Our protection layers FSM600 and FSM1100 for extensive green roofs are made from a mixture of two recycled materials, reground polyester and polypropylene fibre.

Our ProMat for intensive green roofs is made of granulate from recycled shredded tyres.

Our Ecomat product is created from mechanically bonded recycled Polyester clothing and fabric.

Substrates and Growing Mediums

Our substrates are based around recycled crushed brick and composted organic material.

Separation and Slip Layer

Our PE Foil is manufactured from recycled polyethylene granulate.

bauderie

6

Recycling and Reusing Green Roof Components

The level of recycled content within our components dearly demonstrates that these products are then easily returned to the conventional recycling processes at the end of their required lifespan.

breeam

BREEAM 2014 Accreditation

The BREEAM assessment method evaluates the sustainability of built environments through the different stages of their life cycle. The schemes include:

Our green roofs have the potential to count towards these sections of BREEAM:

Land Use and Ecology

LE 03 Mitigating Ecological Impact. Criteria 182 Potential credit 1

LE 04 Enhancing Site Ecology.

Criteria 1&2 Potential credit 1

LE 05 Long Term Impact on Biodiversity

Criteria 8 Potential credit 1

Our green roofs can be specified with our XF118 native species wildflower blanket or Bauder Flora seed mixes 3,5,7,9,11 which are accredited by the RHS as "Perfect for Pollinators" and certified by Flora Locale.

Health and Wellbeing Hea 05 Acoustic performance

Criteria 2 Potential credit 1

Our XF301 sedum system on a metal deck has been tested in accordance with BS EN ISO 140-18: 2006. The sedum plants intercept the impact of rainfall and mitigate the noise so that a figure of 33.5 dB was achieved.

Management Man 04 Stakeholder Participation

Criteria 12 Potential credits 1

Green roofs for fully accessible recreational use provide facilities that can be shared by the relevant parties.

Energy

Ene 04 Low and Zero Carbon Technologies Compliance CN10 Potential credits 2

A Bauder BioSOLAR Green Roof PV array creates local energy generation from renewable sources which can supply a COMpliant

TECHNICAL CREDENTIALS 🧭

Adopting Standards

Throughout Europe, the standards most widely recognised as comprehensively covering green roofs are those of the Forschungsgeslischaft Landschaftsbatu (FLL), which is a research society for the development of the landscape.

We have adopted these well respected standards, which cover all aspects of waterproofing, root protection, landscaping, installation and maintenance and we will continue to do so whilst also working in conjunction with the GRO Code of Best Practice for the UK.

Protection of the Waterproofing

A green roof protects the waterproofing from UV damage and thermal movement. Research has shown that the life expectancy of the waterproofing is significantly extended and in many cases may last the estimated design life of the building, which can eliminate future replacement costs.

Fire Testing

Bauder XF301 was the first sedum blanket in the UK to be awarded an EXT. FAA fire rating by the Building Research Establishment.

The full XF 301 sedum system, including the vegetation waterproofing, and insulation was tested, and awarded an EXT. F.AA.

The same system was tested in a sloped orientation to ensure that the fire behaviour is not affected by roof slope and is also classified EXT.S.AA.

Increased Efficiency and Output of a BioSOLAR PV Array

A green roof helps to maximise solar energy generation as the vegetation preserves ambient rooftop temperatures, keeping the modules at optimal output. The cooling effect increases panel output by up to 5-7%.

Productivity in the Workplace

Research has shown that people working in offices that overlook green spaces have a higher productivity and a reduction in stress levels than those with a poorer outlook on a hard, impervious buildings.

Health

Hospitals are greening overlooked roofs or incorporating rooftop garden areas for the benefit of patients as they find that this speeds recovery.

Reduction of external noise within the building

Green roofs have excellent acoustic qualities for both external sound (up to 3dB) and internal noise (up to 8dB). This can prove to be both economically and environmentally effective when used on structures close to airports or industrial developments.

Reduced Building Running Costs

The enhanced thermal performance provided by a green roof provides a more balanced temperature within the building. This reduces heating costs in the winter and air conditioning expenses during the summer.

Reduced Lifecycle Costs

The main reduction in lifecycle costs comes from the green roof providing protection from the damaging effects of the weather, which effectively 'ages' the waterproofing, thus the time span between replacement is extended significantly, and in many cases replacement will become unnecessary.

Ald to Planning Consent

Many local authorities favour planning proposals that incorporate green roofs within the application, particularly if it meets their policies towards a sustainable environment or supports priority species.

Offset Construction Costs

In large construction projects a green roof can mean that storm water holding tanks are reduced in size or no longer required, as the roof itself will retain a proportion of the rainfall.

Creates an Amenity Space

The roof is often an under utilised asset of a building, as it offers the unique potential to replace the land lost to the construction as reusable space. Large roof areas covering underground car parks can provide parkland or sports facilities.

Increases Property Value

As an additional dimension is created, the property will maximise the potential available for the sites, and so increase the value.

bauder.co.uk

RECREATIONAL GREEN ROOFS

Intensive green roofs provide recreational gardens and amenity spaces at roof level, with all the benefits usually associated with ground level landscaping. Typically they will feature landscapes combining shrubs, perennial and herbaceous plants, grassed areas, trees or hard landscaping for foot or vehicular traffic.

When to Specify

Maximising the full potential of a building by utilising all available space to deliver leisure spaces. Typically created on new build roof constructions, over underground car parks and podiums. The landscape variations are practically limitless for both design and use.

Key Features

These features are in addition to those associated with all green roofs.

- Assists in maximising the building's potential.
- Provides valuable recreational space.
- Offers storm water management benefits due to the depths of substrate used, particularly when specified in conjunction with permeable paving.
- Increases the overall value of the property.

The plants used make a heavy demand on the green roof and will require maintenance, irrigation and management throughout the year to ensure the upkeep of the landscape and allow the vegetation to flourish.

It is important to first establish the landscape finish you are looking to achieve. There is little to restrict the scope for design, other than the overall weight of the system dictating the construction of the supporting structure and the height and level of exposure of the roof.

All our green roof systems meet with FLL Guidelines

SUBSTRATE GREEN ROOFS

These extensive green roof systems are primarily used for their ecological benefits or aesthetic appearance rather than for general access or for leisure purposes.

A traditional extensive substrate green roof system provides a depth of growing medium usually around 80-120mm to allow for the specification of a broader range of species and planting schemes. The plants are generally low maintenance, wind, frost and drought resistant and can be installed by different methods, including plug planting, vegetation mat and seeding.

When to Specify

The system is lightweight and offers the advantage of a bespoke vegetation finish with a substrate depth to support the plants, suitable for new build construction and retrofit or refurbishment projects.

Key Features

- Comparatively lightweight.
- Plants chosen to suit the project and location.
- Significant scope for creating a natural habitat to encourage plants and small wildlife to remain, so aiding biodiversity.
- Can be designed specifically to support particular flora and fauna.
- Aid to planning consent as biodiversity roofs help to meet local authority policies towards a sustainable environment.
- Aid to meeting BREEAM requirements of a development through points secured by the use of accredited native species plants.
- Develop another dimension through a unique opportunity to maximise the potential of the building to support the environment.
- Good levels of rainwater attenuation, depending on substrate depth.
- Cost effective on large roof areas.

Creating a Biodiverse Roof

This specific type of green or 'living' roof typically either tries to replicate as closely as is practical the ecological environment of the site where construction has taken place or sets out to create a natural habitat to support a variety of flora and fauna so aiding biodiversity.

When to Specify

Biodiverse roofs can be created on new build construction and refurbishment or retrofit projects. Ideal for meeting biodiversity action plans (BAP) and delivering to BREEAM and planning requirements.

All our green roof systems comply with FLL Guidelines.

Example System Configuration

Substrate-based extensive green roofs can incorporate a variety of vegetation finishes.

Vegetation Mats

The installation of a precultivated vegetation mat allows instant coverage of the roof. Native species wildflower blanket XF118 meets the growing demand to satisfy the requirements of BREEAM and to meet a biodiversity action plan for the site.

Sedum Blanket XF300 provides dense sedum foliage featuring up to 11 species of sedum with some mosses and grasses for plant diversity.

Plug Planting

This method gives the client both a much greater choice of plant species and the opportunity to plan the layout. The individual immature plants or 'plugs' are planted out into the substrate by hand, which can then grow on to give good cover over the next two full growing seasons.

Seeding

This is an economical and practical method for vegetating larger roof areas. Plant establishment and full coverage will take between 18-24 months, depending upon the time of year sowing takes place and the weather conditions during the period of establishment.

egetation Mat

Biodiverse Habitat

Plug Plants

 Bauder Filter Fleece

 filtration layer that prevents substrate fines from washing into the drainage layer.

 Bauder DSE40

 40mm water storage layer that provides multi directional drainage.

 Bauder FSM600 Protection Mat recycled polyester and polypropylene fibre mix.

 Bauder PE Foll

 polyethylene foil separation and slip layer manufactured from recycled granules.

 Bauder Plant E or AP2

 not resistant, SBS modified bitumen membrane reinforced with 250g/m² recycled spunbond polyester.

www.tisuder.cs.uk/technical-centre

Seeded Roof

bauder.co.uk

11

BioSOLAR Green Roof System

Bauder BioSOLAR is a revolutionary solar PV mounting system for biodiverse or extensive green roofs. Well suited to new build applications where environmentally friendly solutions are required to meet planning and BREEAM requirements. Our BioSOLAR system can also be retrofitted on many existing roofs without the need for any structural modification to the building.

A key element is that the front edge of the PV panel is set 300mm above the level of the substrate, which allows liberal growing room for the vegetation without blocking light to the array that would otherwise reduce the efficiency of the panels. This height setting also enables light and moisture to reach beneath the panel to support the plants below.

Vegetation Mats

Native Species Wildflower Blanket XF118 meets the growing demand for a native species vegetation blanket to satisfy the requirements of BREEAM and to meet a biodiversity action plan for the site.

Sedum Blanket XF300 provides dense sedum foliage cover featuring up to 11 species of sedum with some mosses and grasses for plant diversity.

Plug Planting

Individual immature plants or 'plugs' are planted out into the substrate by hand to give a variety of species, which can then grow on to give good cover over the next two full growing seasons.

Bauder Flora 3 Seed Mix

Ideal for vegetating large roof areas with species selected for their maximum growing height that meet BREEAM requirements.

LIGHTWEIGHT SEDUM SYSTEM

Bauder XF301 extensive sedum blanket system is constructed using low maintenance planting (succulents) that provide excellent cover and increased protection to the waterproofing system.

When to Specify

The Xero Flor sedum blanket is a very versatile green roof system and is suitable for both new build and refurbishment projects. It is ideal for buildings where weight loading is a consideration or planning requirements stipulate the inclusion of a green roof.

Key Features

- The Xero Flor sedum blanket is installed as a complete system
 The most lightweight green roof system available, making it
- ideal for retrofitting or refurbishment projects Delivers instant greening of a roof with sedums and other species able to flourish in our climate
- Ideal solution where a green roof needs to be specified to meet planning requirements
- Cost effective
- Sedum blankets are grown on our farm in the UK and delivered to site within 24 hours of harvesting
- Blanket features up to 11 species of sedums, some mosses and grasses to ensure plant diversity

The plants are grown on a 'blanket' that is harvested like turf and installed by rolling out on top of the waterproofing and any other landscaping components required. The blankets are very lightweight, easy to maintain and provide instant greening to the roof.

All our green roof systems comply with FLL guidelines.

14 bauderie

System Configuration

The multi-functional XF301 sedum system combines the vegetation support layer with a moisture retention fleece to provide the perfect base for all roofing scenarios with a labour efficient installation.

Our patented geo-textile carrier fleece with its ultraviolet resistant nylon loops provides a support base for the specially developed substrate growing medium and gives stability to the established vegetation whether on a low pitch flat roof or a 25° slope.

The pre-attached fleece is a unique feature of our XF301 sedum system, retaining moisture after rainfall and thus allowing the plants to take up the water for future use. The sedums are grown to maturity before being harvested, thus ensuring that they acclimatise quickly to their new rooftop location.

We currently cultivate 60,000m2 of XF301 and are able to harvest the sedum and deliver to site within 24 hours.

Bauder XF301 Sedum System pre-cultivated vegetation blanket on a patented nylon loop and geo-textile base carrier with special substrate and a pre-attached integral 8mm moisture retention fleece. Bauder SDF Mat

multifunctional drainage, filtration and protection layer manufactured from ultraviolet resistant nylon woven loops which are thermally bonded to geo-textile filter fleece facings.

System Installation

Long length rolls being craned into position and installed.

Short 2m rolls of XF301 Sedum System installed by hand.

15 bauder.co.uk

BAUDER PLANTING & VEGETATION

This vegetation blanket meets the growing demand for native species plants to satisfy the requirement of BREEAM. The 24 species of wildflowers and herbs incorporated into the blanket have been selected to provide a viable and vibrant plant that will be present on most of the biodiversity action plan lists that project specific ecology reports now demand.

XF300 Sedum Blanket and XF301 Sedum System Both of these vegetation blankets provide dense sedum foliage cover featuring up to 11 species of sedum with some mosses and grasses for plant diversity.

The plants provide a lot of colour and are selected to suit our climate, and provide 90% ground coverage at installation.

Plug Planting

The use of small seedling plants have a number of advantages, each individual species can be chosen and the location and density of the planting can be controlled.

We supply a wide range of British provenance plug plant species for a Bauder green roof project.

bauder.ie

Seeding

Seeding is a proven way to establish vegetation, however at roof level, the environment makes this a challenge without the correct provisions.

We supply a range of British and Scottish provenance seed mixes which have a unique blend of seed species, adhesive to bind the seed to the substrate, organic fertiliser for nutrients and mycorrhizal fungi to increase the root surface area and establish the plants as they grow.

Appendix C – Met Eireann Rainfall Data

Rainfall Depths for sliding Durations Easting: 321811, Northing: 229008 Met Eireann Return Period Irish Grid:

N/A , 231.0, 164.2, 173.7, 500, 141.9, 153.6, 190.5, 205.3, 218.7, 253.5, 273.8, 297.1, N/A 122.5, 134.2, 144.5, 153.7, 169.8, 183.9, 196.6, 208.4, 229.8, 249.2, 271.5, 100.0, 112.6, 19.7, 27.4, 32.3, 39.5, 59.2, 66.7, 72.5, 81.7, 91.9, 250, 48.4, 107.3, 116.8, 128.5, 138.7, 163.6, 190.0, 201.6, 222.7, 147.8, 177.5, 241.8, 95.2, 263.7, 18.5, 25.8, 30.3, 37.2, 45.6, 56.0, 63.2, 68.8, 77.5, 87.4, 200, 131.5, 169.5, 193.1, 213.8, 232.5, 109.9, 121.5, 140.4, 155.9, 181.8, 100.8, 254.0, 89.2, 17.0, 34.4, 52.1, 64.2, 150, 23.8, 27.9, 42.3, 58.9, 72.5, 81.9, 112.3, 122.0, 130.6, 145.7, 181.8, 100.8, 158.9, 201.8, 92.3, 170.8, 220.0, 240.9, 81.5, 74.6, 47.1, 53.3, 58.2, 65.9, 100, 15.2, 21.2, 24.9, 30.8, 38.1, 174.1, 49.7, 76.4, 94.7, 106.1, 115.7, 124.1, 138.8, 151.7, 163.3, 193.7, 211.5, 232.0, 6.69 86.6, 14.0, 19.5, 23.0, 28.5, 35.3, 61.6, 43.8, 54.3, 115.4, 129.7, 142.1, 163.8, 200.0, 107.2, 153.4, 182.8, 50, 12.5, 17.4, 20.5, 25.5, 31.7, 39.5, , 7. 69 86.8, 97.9, 219.9, 44.9, 49.2, 63.6, 79.3, 56.0, 97.4, 105.2, 118.9, 130.8, 141.5, 151.5, 169.7, 186.3, 77.7, 88.5, 205.5, 34.7, 49.6, 56.5, 62.1, 70.8, 10.8, 15.0, 22.1, 27.7, 39.6 43.4, 30, 110.8, 122.3, 132.7, 142.3, 159.9, 176.0, 97.7, 90.1, 194.5, 56.5, 64.6, 71.1, 20, 9.6 13.3, 15.7, 19.7, 24.8, 31.2, 35.7, 39.3, 44.9, 51.4, 81.5, Years 159.1, 108.6, 118.4, 127.4, 143.9, 47.9, 85.6, 97.9, 176.6, 7.8, 10.8, 55.0, 60.7, 70.5, 78.6, 16.1, 20.5, 25.9, 29.8, 32.9, 37.8, 43.4, 104.6, 113.0, 128.4, 142.6, 95.5, 8.6, 16.6, 24.5, 40.0, 46.1, 67.7, 159.0, 5, 6.2, 10.1, 13.0, 21.2, 27.1, 31.3, 51.1, 74.2, 85.6, 36.1, 60.2, 108.2, 137.1, 100.1, 123.3, 64.2, 70.5, 91.2, 8.0, 9.4, 12.0, 19.7, 22.8, 37.5, 48.1, 81.6, 153.2, 5.7, 15.4, 25.3, 29.2, 33.8, 43.4, 57.0, 145.3, 101.9, 129.8, 94.0, 116.5, 34.3, 59.6, 65.7, 85.6, 5.1, 20.7, 23.0, 39.7, 7.1, 17.8, 44.1, 52.7, 76.3, é 8.4, 10.8, 13.9, 26.6, 30.9, 132.9, 92.0, 05.6, 118.2, 2, 5.8, 6.9, 8.9, 15.0, 17.5, 19.5, 22.7, 26.4, 29.4, 34.2, 38.1, 46.0, 52.5, 58.1, 68.0, 76.7, 84.6, 11.6, 109.8, 123.8, 3.6, 5.0, 7.7, 13.1, 15.3, 17.1, 20.0, 26.0, 34.0, 41.4, 47.5, 62.1, 70.3, 77.8, 84.8, 97.8, 5.9, 10.0, 6months, lyear, Interval 70.1, 92.2, 104.8, 42.1, 57.3, 63.9, 37.5, 4.1, 5.4, 7.2, 9.5, 12.6, 19.6, 23.0, 25.9, 32.3, 50.2, 81.6, 2.5, 3.5, 11.2, 17.4, days 2 days 3 days days days hours 16 days 15 mins 1 hours 2 hours 3 hours 10 days 12 days 20 days 25 days 5 mins 30 mins 6 hours 9 hours 12 hours 18 hours 24 hours **URATION** 10 mins NOTES: 8 9 4 4

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin' Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies TN61.pdf

Appendix D – Attenuation Storage Proposals

Attenuation calculation for whole site.

Project : Job No :	Temple Roa 1711-08	d			Architect :	OMP				
Attenuation	n Design Rel	turn Period			100	Yrs			Rev	В
Positively	Drained Area	a (See drawi	ng C3)		2.12	На				
Allowable	Discharge (S	ee UK Suds	in appendi	x D)	8.17	l/s				
Rainfall Dat	a used was I	ssued By Me	t Eireann for	Temple Hill	(See append	fix C)				
Duration (minutes)	Rainfall (mm)	Rainfall (m3/ha)	Roof Area (m3)	Permeable Parking (m3)	Landscape (m3)	Road Path (m3)	Total Inflow	Allowable Outflow (m3)	Storage (m3)	Duration (minutes)
10	21.20	212.00	260.34	23.90	0.00	143.10	427.33	4.90	422.43	10
15	24.90	249.00	305.77	28.07	0.00	168.08	501.91	7.35	494.56	15
30	30.80	308.00	378.22	34.72	0.00	207.90	620.84	14.71	606.14	30
60	38.10	381.00	467.87	42.95	0.00	257.18	767.99	29.41	738.58	60
120	47.10	471.00	578.39	53.09	0.00	317.93	949.40	58.82	890.58	120
240	58.20	582.00	714.70	65.60	0.00	392.85	1173.15	117.65	1055.50	240
360	65.90	659.00	809.25	74.28	0.00	444.83	1328.36	176.47	1151.89	360
720	81.50	815.00	1000.82	91.87	0.00	550.13	1642.81	352.94	1289.87	720
1440	100.80	1008.00	1237.82	113.62	0.00	680.40	2031.85	705.89	1325.96	1440
2880	112.30	1123.00	1379.04	126.58	0.00	758.03	2263.65	1411.78	851.88	2880
Max Storag	e Capacity I	Required							1325.96	
						Allow 20% for	climatic char	108	1591 15	m3
						2070101	carriero crier	Sav	1600.00	m3
Contribu	tion Areas	(Junction	on Temp	le Road h	as been l	gnored)		cay.		
Roofs / Sh	eds/ etc	1,228	Hectares	100	% Impervio	us	1.23	Hectares		
Permeable	Parking	0.141	Hectares	80	% Impervio	us	0.11	Hectares		
Road / Pati	hs	0.750	Hectares	90	% Impervio	us	0.68	Hectares		
Total		2.12	Hectares		Total Imp	ervious	2.02	Hectares		
50% of Volu 50% of Volu	ume to be atte	enuated in Zo enuated in Zo	one 1 using S one 2 using (Stormtech Ce Concrete Atte	ells enuation Tan	k				

Provide a Stormtech attenuation structure to accommodate 50% of volume (800m³) from zone 1 and a concrete attenuation tank under building B1 for 50% of volume (800m³) from zone 2.

Extract from Drawing C6-1 showing Zone1 amd Zone 2 Attenuation Zones

PROJECT I	NFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

TEMPLE HILL

DUBLIN, BLACKROCK

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- MBERS SHALL MEET THE REQUIREMENTS OF ASTM F2416-108, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) RUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- HER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD DE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AMSHTD LIFD BEIGGE DESIGN SPECIFICATIONS. BECTION 12:12, ARE MET FOR: 1) OMS-DURATION DEAD LOADS, AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTD DESIGN TRUCK WITH CONSIDERATION ON IMPACT AND MALTPLE VEHICLE IMESSINGES.
- MIBERS SHALL BE DESIGNED, TESTED, AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787 NICHARD PRACTICE FOR ISTUUCTURAL DESIGN OF THERMOPLASTIC CORPLUSATED WALL STOMMATER COLLECTOR OHAMIERS". DI CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (+1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER, 2) MIAM PERMANENT (75 YR) COVER LOAD, AND 3) ALLOWABLE COVER WITH PARKED (+WEEX) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION: TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 37. TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 37.
 - THAN 3". TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, A) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 2.2 OF ASTM F24/6 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/NIN, B) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73' F / 23' C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE OCLD OR YELLOW COLUME.
- NLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN NOINEER OR CWHER, THE CHAMBER MANLYACTURER BHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE ELVERING CHAMBER TO THE FRANCISCIT SITE AS FOLLOWS: THE STRUCTURAL EVALUATION BHALL BE SEALED BY A REGISTREED PROFESSIONAL ENGINEER THE STRUCTURAL EVALUATION BHALL BE SEALED BY A REGISTREED FRACTORS ARE GREATER THAN OR EQUAL TO 1.85 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMAR REQUIRED BY ASTMITIZED AND BY ISCTIONS 3 AND 12.12 OF THE AASHTO
- LEPS BRIDGED EDSION SPECIFICATIONS FOR THERMOPLASTIC PPE. THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 72 YEAR MODULUS USED FOR DESIGN. IBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

- IMPORTANT NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM 1. STORMTECH MC-3000 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH MC-3000 CHAMBERS SHALL BE INSTALLED IN ACCORD NCE WITH THE "STORMTECH MC-350 CHANBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMITECH RECOMMENDS 3 BACKFILL METHODS: 5 TONESHOTER LOCATED OF THE CHAMBER BED. 6 BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUB-GRADE. 6 BACKFILL ROM OUTSIDE THE EXCAVATOR UNITIG A LONG BOOM HOE OR BIXAUAYATOR.

- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS.
- 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12' (300 mm) INTO CHAMBER END CAPS.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN 14" AND 2" (20-50 m 8. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 9. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESI ENGINEER. 10.

ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUB-SURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. 11.

NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE" 1.

 - THE USE OF EQUIPMENT OVER MC-3000 CHAMBERS IS LIMITED: NO EQUIPMENT & ALLOWED ON BARE CHAMBERS. NO RUBBERT TIRED LOADER JUMIT TRUCK, ON EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORD WITH THE STORMITEON INCISSIONIC-4000 CONSTRUCTION QUIDE". WITHOUT LIMITS FOR CONSTRUCTION CONSTRUCTION QUIDE". FULL 36" (900 mm) OF STABILISED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACC BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STAN WARRANTY.

CONTACT STORMTECH AT 1-886-892-2094 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT

ISOLATOR ROW PLUS COMPONENTS SHOWN ON THIS DESIGN MAY NOT BE AVAILABLE IN THE SPECIFIED PROJECT REGION, PLEASE CONTACT YOUR LOCAL ADS REPRESENTATIVE OR E-MAIL ADSINTERNATIONAL@ADS-PIPE.COM FOR

Stormtech details for Zone 1 Attenuation

Appendix E – Storm Drain Calculations

1200

1200

1200

1200

1200

724789.555

724746.766

724744.645

724777.352

724763.809

728883.155

728907.417

728904.587

728880.072

728825.907

2 100

3.541

3.530

1.920

1.000

40

41

42

43

44

0.035

0.059

0.011

5.00

5.00

5.00

20.000

19.591

19.600

20.000

File: Temple Hill v1.7 (20%cc).pPage 2Network: SModel: Leonardo Rigui15/11/2021

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
			(m)				
1	0.128	5.00	20.337	1200	724780.075	728868.140	1.687
45	0.055	5.00	19.688	1200	724728.932	728900.701	1.688
46		5.00	19.172	1200	724798.764	728939.291	0.975
47		5.00	19.165	1200	724803.423	728971.213	1.315
48	0.085	5.00	18.441	1200	724844.682	728947.551	1.441
J1			16.190		724625.914	728915.064	1.689
5	0.047	5.00	16.504		724626.479	728907.666	0.904
7	0.038	5.00	17.307		724656.857	728913.697	1.807
J2			16.963		724656.292	728920.180	2.618
J3			17.831		724689.196	728925.721	3.655
8	0.058	5.00	18.082		724688.070	728919.915	1.582
26	0.055	5.00	19.662		724815.421	728893.269	2.162
49	0.068	5.00	19.904		724757.912	728884.506	1.429
J4			19.796		724760.359	728892.809	1.846
Depth/Area 1	0.045	5.00	18.439		724828.177	728962.261	1.239
J5			18.836		724825.751	728959.419	1.742
J8			17.808		724776.184	728970.531	4.325
19			17.445		724782.249	728978.375	4.028
17		5.00	17.956		724781.465	728966.554	1.476
19		5.00	17.161		724772.732	728985.689	1.475

<u>Links</u>

Name	US Nodo	DS Nodo	Length	ks (mm) /	US IL	DS IL	Fall (m)	Slope	Dia (mm)	T of C	Rain (mm/hr)
	Noue	Noue	(11)		(11)	(11)	(111)	(1.7)	(11111)	(111115)	(11111)
3	3	2	6.266	0.600	10.675	10.600	0.075	83.5	225	10.06	32.5
4	4	3	6.212	0.600	10.820	10.675	0.145	42.8	225	9.99	32.6
6	6	4	68.533	0.600	11.250	10.820	0.430	159.4	225	9.94	32.7
7	ATT/HB Z2	6	32.691	0.600	11.440	11.250	0.190	172.1	225	8.83	34.5
15	15	ATT/HB Z2	3.066	0.600	13.663	13.652	0.011	278.8	300	5.59	41.9
9	9	ATT/HB Z2	35.784	0.600	13.400	11.460	1.940	18.4	375	8.29	35.5
19	19	9	2.446	0.600	13.417	13.400	0.017	143.9	375	8.14	35.8
18	18	J9	9.915	0.600	13.483	13.417	0.066	150.2	375	8.12	35.9
19a	19	J9	12.003	0.600	15.686	15.446	0.240	50.0	150	5.14	43.3
17a	17	18	6.611	0.600	16.480	16.348	0.132	50.1	150	5.08	43.5

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow
				(m)	(m)		(I/s)
3	1.431	56.9	86.0	1.350	1.425	0.733	0.0
4	2.004	79.7	86.3	1.155	1.350	0.733	0.0
6	1.033	41.1	86.5	1.879	1.155	0.733	0.0
7	0.994	39.5	91.4	4.516	1.879	0.733	0.0
15	0.937	66.2	29.2	2.315	2.229	0.193	0.0
9	4.235	467.8	69.4	3.625	4.346	0.541	0.0
J9	1.508	166.6	64.3	3.653	3.625	0.497	0.0
J8	1.476	163.0	64.4	3.950	3.653	0.497	0.0
19a	1.426	25.2	0.0	1.325	1.849	0.000	0.0
17a	1.425	25.2	0.0	1.326	1.310	0.000	0.0

CAUS	EWAY	Repor JJ Can	Report by: JJ Campbell				File: Temple Hill v1.7 (20%cc).p Network: S Model: Leonardo Rigui 15/11/2021				3	
						<u>Links</u>						
Name	US Node	DS Node	Length (m)	ks (m	nm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
10	10	J8	19.108	(0.600	13.610	13.483	0.127	150.5	375	8.01	36.1
11	11	10	19.524	(0.600	13.760	13.610	0.150	130.2	300	7.79	36.5
12	12	11	35.394	(0.600	13.920	13.760	0.160	221.2	300	7.55	37.0
45	45	12	12.673	(0.600	18.000	17.747	0.253	50.1	150	5.15	43.3
13	13	12	37.385	(0.600	14.080	13.920	0.160	233.7	300	6.99	38.3
J3	J3	13	18.850	(0.600	14.176	14.080	0.096	196.4	300	6.38	39.7
J2	J2	J3	33.367	(0.600	14.345	14.176	0.169	197.4	300	6.10	40.5
8	8	J3	5.914	(0.600	16.500	16.263	0.237	25.0	150	5.05	43.6
J1	J1	J2	30.806	(0.600	14.501	14.345	0.156	197.5	300	5.60	41.9
7a	7	J2	6.508	(0.600	15.500	15.240	0.260	25.0	150	5.05	43.6
5	5	J1	7.420	(0.600	15.600	14.501	1.099	6.8	150	5.03	43.6
14	14	J1	9.646	(0.600	14.550	14.501	0.049	196.9	300	5.14	43.3
16	16	15	56.605	(0.600	15.500	13.750	1.750	32.3	225	5.41	42.5
17	J6	15	8.136	(0.600	13.691	13.663	0.028	290.6	300	5.53	42.1
19	J7	JG	17.225	(0.600	13.750	13.691	0.059	292.0	300	5.38	42.5
18	18	JG	15.425	(0.600	15.000	13.750	1.250	12.3	100	5.12	43.4
20	20	J7	17.404	(0.600	15.525	13.750	1.775	9.8	225	5.07	43.5
22	22	21	9.852	(0.600	13.500	12.770	0.730	13.5	225	10.79	31.4
23	23	22	26.537	(0.600	13.700	13.500	0.200	132.7	225	10.74	31.4
24	24	23	75.403	(0.600	15.900	13.700	2.200	34.3	225	10.35	32.0
25	25	24	31.832	(0.600	15.970	15.900	0.070	454.7	225	9.79	32.9
26	ATT/HB Z1	25	5.284	(0.600	16.000	15.970	0.030	176.1	225	8.92	34.4
41	41	ATT/HB Z1	18.381	(0.600	16.050	16.000	0.050	367.6	300	6.18	40.3
27	27	ATT/HB Z1	10.352	(0.600	16.050	16.000	0.050	207.0	525	8.83	34.5
		Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add			
			(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow			
						(m)	(m)		(I/s)			
		10	1.475	162.9	64.8	4.515	3.950	0.497	0.0			
		11	1.376	97.3	47.4	4.440	4.590	0.360	0.0			
		12	1.053	74.4	46.0	5.330	4.440	0.344	0.0			
		45	1.425	25.2	8.6	1.538	1.653	0.055	0.0			
		13	1.024	72.4	39.9	3.720	5.330	0.288	0.0			
		J3	1.118	79.0	36.1	3.355	3.720	0.251	0.0			
		J2	1.115	78.8	28.3	2.318	3.355	0.193	0.0			

				(m)	(m)		(I/s)
10	1.475	162.9	64.8	4.515	3.950	0.497	0.0
11	1.376	97.3	47.4	4.440	4.590	0.360	0.0
12	1.053	74.4	46.0	5.330	4.440	0.344	0.0
45	1.425	25.2	8.6	1.538	1.653	0.055	0.0
13	1.024	72.4	39.9	3.720	5.330	0.288	0.0
J3	1.118	79.0	36.1	3.355	3.720	0.251	0.0
J2	1.115	78.8	28.3	2.318	3.355	0.193	0.0
8	2.024	35.8	9.2	1.432	1.418	0.058	0.0
J1	1.115	78.8	23.5	1.389	2.318	0.155	0.0
7a	2.021	35.7	6.0	1.657	1.573	0.038	0.0
5	3.903	69.0	7.4	0.754	1.539	0.047	0.0
14	1.117	78.9	16.9	1.150	1.389	0.108	0.0
16	2.308	91.8	17.0	0.800	2.303	0.111	0.0
17	0.917	64.8	12.4	2.660	2.315	0.082	0.0
19	0.915	64.7	7.5	3.333	2.660	0.049	0.0
18	2.211	17.4	5.2	1.400	2.801	0.033	0.0
20	4.203	167.1	7.6	2.000	3.408	0.049	0.0
22	3.580	142.4	107.5	0.675	1.105	0.948	0.0
23	1.133	45.1	107.7	0.775	0.675	0.948	0.0
24	2.242	89.1	109.7	3.075	0.775	0.948	0.0
25	0.607	24.1	112.6	3.305	3.075	0.948	0.0
26	0.982	39.0	117.6	3.291	3.305	0.948	0.0
41	0.814	57.5	37.2	3.241	3.216	0.256	0.0
27	1.553	336.1	86.3	3.030	2.991	0.692	0.0

CAUSEWAY S						File: Ten Network Model: I 15/11/2	nple Hill v k: S Leonardo 021	1.7 (20% Rigui	.cc).p	Page 4			
					<u>Lin</u>	<u>ks</u>							
Name	US Node	DS Node	Length (m)	ks (mn n	ן (ר	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)	
28	28	27	16.647	0.6	500	16.072	16.050	0.022	756.7	525	8.72	34.7	
29	29	28	20.855	0.6	500	16.119	16.072	0.047	443.7	450	8.37	35.4	
46	46	29	4.926	0.6	500	18.197	1/./6/	0.430	11.5	150	5.03	43.6	
30	30	29	29.385	0.6	500	16.185	16.119	0.066	445.Z	450	8.01 5.21	36.1 42.9	
39	39	30	36 306	0.0	500	16 600	16 185	0.005	20.4	375	5.68	42.0	
31	31	30	57 498	0.0	500	16 314	16 185	0.415	445 7	450	7 50	37.1	
36	36	31	40.146	0.6	500	16.450	16.314	0.136	295.2	300	5.74	41.5	
32	32	31	20.233	0.6	500	17.100	16.314	0.786	25.7	225	6.50	39.5	
33	33	32	22.581	0.6	500	18.000	17.100	0.900	25.1	225	6.37	39.8	
34	34	33	63.342	0.6	500	20.100	18.000	2.100	30.2	225	6.22	40.2	
35	35	34	21.083	0.6	500	20.200	20.100	0.100	210.8	150	5.78	41.4	
35a	44	35	13.859	0.6	500	20.300	20.200	0.100	138.6	150	5.27	42.9	
J5	J5	37	16.528	0.6	500	17.094	16.600	0.494	33.5	225	5.36	42.6	
48	48	37	6.612	0.6	500	17.000	16.600	0.400	16.5	150	5.04	43.6	
Depth/Area 1	Depth/Area 1		3.737	0.6	500	17.200	17.094	0.106	35.3	150	5.04	43.6	
38	38	70 12	22.819	0.6	000	17.775	17.094	0.681	33.5	225	5.24	43.U	
47 26a	47	30 30	0 261 9 261	0.0	500	17.850	16 850	0.098	59.4 1/ 2	150	5.07	43.5 //3.5	
40	40	39	28 752	0.0	500	17 900	16 850	1 050	27.4	225	5.00	43.5	
42	42	41	3.537	0.6	500	16.070	16.050	0.020	176.8	225	5.80	41.3	
J4	J4	42	19.638	0.6	500	17.951	17.830	0.121	162.3	225	5.74	41.5	
49	49	J4	8.656	0.6	500	18.475	17.950	0.525	16.5	150	5.06	43.5	
43	43	J4	21.237	0.6	500	18.080	17.951	0.129	164.6	225	5.42	42.4	
		Name	Vel	Cap	Flow	v US	DS	Σ Area	ο ΣΑ	dd			
			(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Infl	ow			
						(m)	(m)		(1/	s)			
	28		0.806	174.5	86.8	3 2.903	3.030	0.692	2	0.0			
	29		0.958	152.4	88.4	2.631	2.978	0.692	2	0.0			
	46		2.993	52.9	0.0	0.825	1.283	0.000) (0.0			
	30		0.957	152.2	90.2	1.965	2.631	0.692	<u> </u>	0.0			
	39 27		2.555	214.0	12.5	2.423 1610	2.190	0.090		0.0			
	37		0.956	152.1	38.0) 2 2 3 6	2.040	0.283		0.0			
	36		0.910	64.3	16.3	0.750	2.386	0.109) (0.0			
	32		2.589	102.9	18.2	2.415	2.461	0.127	,	0.0			
	33		2.622	104.3	12.7	2.075	2.415	0.088	3	0.0			
	34		2.391	95.1	12.8	0.975	2.075	0.088	3	0.0			
	35		0.688	12.2	1.7	0.950	1.050	0.011	L (0.0			
	35a		0.852	15.0	1.8	0.850	0.950	0.011	<u> </u>	0.0			
	J5		2.269	90.2	26.4	1.517	1.769	0.171		0.0			
	48	+ 6 / 4 mage 1	2.489	44.0	13.4	1.291	1.844	0.085		0.0			
	Dep	th/Area 1	1.701	30.1	10 A	L 1.089	1.592	0.045	5	0.0			
	58 47		1 307	23 1	19.0) 1.170	1 268	0.120)	0.0			
			2.682	47.4	8.6	5 2.012	2.500	0.055	5	0.0			
	40		2.510	99.8	5.5	5 1.875	2.425	0.035	5	0.0			
	42		0.980	39.0	38.2	3.305	3.316	0.256	5	0.0			
	J4		1.023	40.7	38.3	1.620	1.545	0.256	5	0.0			
	49		2.493	44.0	10.7	1.279	1.696	0.068	3	0.0			
	43		1.016	40.4	28.8	1.695	1.620	0.188	3	0.0			

CAUS	SEV		B JJ	eport by: Campbel	1		File: Te Netwo Model 15/11/	mple Hill rk: S : Leonardo 2021	v1.7 (20 o Rigui	%cc).p	Page	5
						Li	<u>nks</u>					
N 1	lame	US Node 1	DS Node 43	Length (m) 12.239	ks (mm) / n 0.600	US IL (m) 18.650	DS IL (m) 18.08	Fall (m) 0 0.570	Slope (1:X) 21.5	Dia (mn 22	a To n) (mi 25 5	f C Rain ns) (mm/hr) .07 43.5
			Nai 1	me Ve (m/ 2.83	l Cap (s) (l/s)	Flow (I/s) 20.2	US Depth (m) 1.462	DS Depth (m) 1.695	Σ Area (ha) 0.128	Σ Ado Inflov (I/s) 0.0	l v D	
						<u>Pipeline</u>	Schedul	<u>e</u>				
	Link	Length (m)	Slope (1·X)	Dia	Link Type	US CL (m)	US IL (m)	US Dep (m)	oth Ds	5 CL	DS IL (m)	DS Depth
	3	6.266	83.5	225	Circular	12.250	10.675	1.3	50 12	.250	10.600	1.425
	4	6.212	42.8	225	Circular	12.200	10.820	1.1	.55 12	.250	10.675	1.350
	6	68.533	159.4	225	Circular	13.354	11.250	1.8	379 12	.200	10.820	1.155
	7	32.691	172.1	. 225	Circular	16.181	11.440	4.5	16 13	.354	11.250	1.879
	15	3.066	278.8	300	Circular	16.278	13.663	2.3	15 16	.181	13.652	2.229
	9	35.784	18.4	375	Circular	17.400	13.400	3.6	525 16	.181	11.460	4.346
	J9	2.446	143.9	375	Circular	17.445	13.417	3.6	53 17	.400	13.400	3.625
	J8	9.915	150.2	375	Circular	17.808	13.483	3.9	50 17	.445	13.417	3.653
	19a	12.003	50.0	150	Circular	17.161	15.686	1.3	25 17	.445	15.446	1.849
	17a	6.611	50.1	. 150	Circular	17.956	16.480	1.3	26 17	.808	16.348	1.310
	10	19.108	150.5	375	Circular	18.500	13.610	4.5	515 17	.808	13.483	3.950
	11	19.524	130.2	300	Circular	18.500	13.760	4.4	40 18	.500	13.610	4.590
	12	35.394	221.2	300	Circular	19.550	13.920	5.3	30 18	.500	13.760	4.440
	45	12.673	50.1	150	Circular	19.688	18.000	1.5	38 19	.550	17.747	1.653
	13	37.385	233.7	300	Circular	18.100	14.080	3.7	20 19	.550	13.920	5.330
	13	18.850	196.4	300	Circular	17.831	14.176	3.3	155 18	.100	14.080	3.720
	J2	33.367	197.4	300	Circular	16.963	14.345	2.3	518 17	.831	14.176	3.355
	8 J1	5.914 30.806	25.0 197.5	150 300	Circular Circular	18.082 16.190	16.500 14.501	1.4 1.3	32 17 89 16	.831 .963	16.263 14.345	1.418 2.318

LINK	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
3	3	1200	Manhole	Adoptable	2	1200	Manhole	Adoptable
4	4	1200	Manhole	Adoptable	3	1200	Manhole	Adoptable
6	6	1200	Manhole	Adoptable	4	1200	Manhole	Adoptable
7	ATT/HB Z2	1350	Manhole	Adoptable	6	1200	Manhole	Adoptable
15	15	1200	Manhole	Adoptable	ATT/HB Z2	1350	Manhole	Adoptable
9	9	1350	Manhole	Adoptable	ATT/HB Z2	1350	Manhole	Adoptable
J9	19		Junction		9	1350	Manhole	Adoptable
J8	J8		Junction		19		Junction	
19a	19		Manhole	Adoptable	19		Junction	
17a	17		Manhole	Adoptable	18		Junction	
10	10	1350	Manhole	Adoptable	18		Junction	
11	11	1200	Manhole	Adoptable	10	1350	Manhole	Adoptable
12	12	1200	Manhole	Adoptable	11	1200	Manhole	Adoptable
45	45	1200	Manhole	Adoptable	12	1200	Manhole	Adoptable
13	13	1200	Manhole	Adoptable	12	1200	Manhole	Adoptable
J3	13		Junction		13	1200	Manhole	Adoptable
J2	J2		Junction		13		Junction	
8	8		Manhole	Adoptable	13		Junction	
J1	J1		Junction		J2		Junction	

CAUSEWAY C						File: Ten Networ Model: 15/11/2	nple Hill v1.7 k: S Leonardo Rig 021	' (20%cc). gui	Page (6
					<u>Pipeline</u>	<u>Schedule</u>				
Link	Length (m)	Slope (1·X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
7a	6 508	25.0	150	Circular	17 307	15 500	1 657	16 963	15 240	1 573
5	7 420	6.8	150	Circular	16 504	15 600	0 754	16 190	14 501	1 539
14	9.646	196.9	300	Circular	16.000	14.550	1.150	16.190	14.501	1.389
16	56.605	32.3	225	Circular	16.525	15.500	0.800	16.278	13.750	2.303
17	8.136	290.6	300	Circular	16.651	13.691	2.660	16.278	13.663	2.315
19	17.225	292.0	300	Circular	17.383	13.750	3.333	16.651	13.691	2.660
18	15.425	12.3	100	Circular	16.500	15.000	1.400	16.651	13.750	2.801
20	17.404	9.8	225	Circular	17.750	15.525	2.000	17.383	13.750	3.408
22	9.852	13.5	225	Circular	14.400	13.500	0.675	14.100	12.770	1.105
23	26.537	132.7	225	Circular	14.700	13.700	0.775	14.400	13.500	0.675
24	75.403	34.3	225	Circular	19.200	15.900	3.075	14.700	13.700	0.775
25	31.832	454.7	225	Circular	19.500	15.970	3.305	19.200	15.900	3.075
26	5.284	176.1	225	Circular	19.516	16.000	3.291	19.500	15.970	3.305
41	18.381	367.6	300	Circular	19.591	16.050	3.241	19.516	16.000	3.216
27	10.352	207.0	525	Circular	19.605	16.050	3.030	19.516	16.000	2.991
28	16.647	756.7	525	Circular	19.500	16.072	2.903	19.605	16.050	3.030
29	20.855	443.7	450	Circular	19.200	16.119	2.631	19.500	16.072	2.978
46	4.926	11.5	150	Circular	19.172	18.197	0.825	19.200	17.767	1.283
30	29.385	445.2	450	Circular	18.600	16.185	1.965	19.200	16.119	2.631
39	17.578	26.4	225	Circular	19.500	16.850	2.425	18.600	16.185	2.190
37	36.306	87.5	375	Circular	18.594	16.600	1.619	18.600	16.185	2.040
31	57.498	445.7	450	Circular	19.000	16.314	2.236	18.600	16.185	1.965
36	40.146	295.2	300	Circular	17.500	16.450	0.750	19.000	16.314	2.386
32	20.233	25.7	225	Circular	19.740	17.100	2.415	19.000	16.314	2.461
33	22.581	25.1	225	Circular	20.300	18.000	2.075	19.740	17.100	2.415
1	ink	us	Dia	Node	мн	г)S Dia	a Nor	łe	мн

LIIIK	03	Dia	Noue		03	Dia	Noue	
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
7a	7		Manhole	Adoptable	J2		Junction	
5	5		Manhole	Adoptable	J1		Junction	
14	14	2200	Manhole	Adoptable	J1		Junction	
16	16	1200	Manhole	Adoptable	15	1200	Manhole	Adoptable
17	J6	1200	Junction		15	1200	Manhole	Adoptable
19	J7	1200	Junction		J6	1200	Junction	
18	18	1200	Manhole	Adoptable	J6	1200	Junction	
20	20	1200	Manhole	Adoptable	J7	1200	Junction	
22	22	1200	Manhole	Adoptable	21	1200	Manhole	Adoptable
23	23	1200	Manhole	Adoptable	22	1200	Manhole	Adoptable
24	24	1200	Manhole	Adoptable	23	1200	Manhole	Adoptable
25	25	1200	Manhole	Adoptable	24	1200	Manhole	Adoptable
26	ATT/HB Z1	1500	Manhole	Adoptable	25	1200	Manhole	Adoptable
41	41	1200	Manhole	Adoptable	ATT/HB Z1	1500	Manhole	Adoptable
27	27	1500	Manhole	Adoptable	ATT/HB Z1	1500	Manhole	Adoptable
28	28	1500	Manhole	Adoptable	27	1500	Manhole	Adoptable
29	29	1350	Manhole	Adoptable	28	1500	Manhole	Adoptable
46	46	1200	Manhole	Adoptable	29	1350	Manhole	Adoptable
30	30	1500	Manhole	Adoptable	29	1350	Manhole	Adoptable
39	39	1200	Manhole	Adoptable	30	1500	Manhole	Adoptable
37	37	1350	Manhole	Adoptable	30	1500	Manhole	Adoptable
31	31	1500	Manhole	Adoptable	30	1500	Manhole	Adoptable
36	36	2200	Manhole	Adoptable	31	1500	Manhole	Adoptable
32	32	1200	Manhole	Adoptable	31	1500	Manhole	Adoptable
33	33	1200	Manhole	Adoptable	32	1200	Manhole	Adoptable

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

CAUSEWA	r 🕄	Report b JJ Campt	y: pell		File Ne ⁻ Mc 15/	e: Temple twork: S odel: Leo /11/2021	e Hill v1 nardo I	1.7 (20% Rigui	cc).p P	age 7		
				<u>Pipe</u>	line Sche	dule			•			
Link	Length	Slope	Dia	Link	US CL	US IL	US E	Depth	DS CL	DS IL	DS Depth	
	(m)	(1:X)	(mm)	Туре	(m)	(m)	()	m)	(m)	(m)	(m)	
34	63.342	30.2	225	Circular	21.300	20.100		0.975	20.300	18.000	2.075	
35	21.083	210.8	150	Circular	21.300	20.200		0.950	21.300	20.100	1.050	
35a	13.859	138.6	150	Circular	21.300	20.300		0.850	21.300	20.200	0.950	
J5	16.528	33.5	225	Circular	18.836	17.094		1.517	18.594	16.600	1.769	
48	6.612	16.5	150	Circular	18.441	17.000		1.291	18.594	16.600	1.844	
Depth/Area 1	3.737	35.3	150	Circular	18.439	17.200		1.089	18.836	17.094	1.592	
38	22.819	33.5	225	Circular	19.170	17.775		1.170	18.836	17.094	1.517	
47	5.819	59.4	150	Circular	19.165	17.850		1.165	19.170	17.752	1.268	
26a	9 261	14.2	150	Circular	19 662	17 500		2 012	19 500	16 850	2 500	
200 /0	28 752	27 /	225	Circular	20.000	17 900		1 875	19 500	16 850	2.500	
40	20.752	176.0	225	Circular	10 600	16 070		2 205	10 501	16.050	2.425	
42	3.337	1/0.0	225	Circular	19.000	17.070		3.305	19.591	17.050	5.510	
J4	19.638	162.3	225	Circular	19.796	17.951		1.620	19.600	17.830	1.545	
49	8.656	16.5	150	Circular	19.904	18.475		1.279	19.796	17.950	1.696	
43	21.237	164.6	225	Circular	20.000	18.080		1.695	19.796	17.951	1.620	
1	12.239	21.5	225	Circular	20.337	18.650		1.462	20.000	18.080	1.695	
Link		US	Dia	Node	r	ИН	DS	Dia	Nod	e I	мн	
		Node	(mm) Туре	Т	уре	Node	(mm)	Тур	е Т	уре	
34	34		1200) Manho	le Ado	ptable	33	1200	Manh	ole Ado	ptable	
35	35		1200) Manho	le Ado	ptable	34	1200	Manh	ole Ado	ptable	
35a	44		1200) Manho	le Ado	ptable	35	1200	Manh	ole Ado	ptable	
J5	J5			Junctio	n		37	1350	Manh	ole Ado	ptable	
48	48		1200) Manho	le Ado	ptable	37	1350	Manh	ole Ado	ptable	
Depth/Are	ea 1 De	pth/Area	1	Manho	le Ado	ptable	J5		Juncti	on		
38	38		1200) Manho	le Ado	ptable	J5		Juncti	on		
47	47		1200) Manho	le Ado	ptable	38	1200	Manh	ole Ado	ptable	
26a	26			Manho	le Ado	ntable	39	1200	Manh	ole Ado	ntable	
40	40		1200) Manho	le Ado	ntable	39	1200	Manh	ole Ado	ntable	
40	40		1200) Manho		ntahlo	JJ /1	1200	Manh		ntable	
42			1200	lunctio	n Auo	ptuble	41 42	1200	Manh		ntable	
J4 40	10			Manho	lo Ado	ntablo	42	1200	luncti	one Auo	ptable	
49	49		1200	Manho	le Ado	ptable	J4		Juncti	011		
45	45		1200) Manha	le Ado	ptable	J4 4 2	1200	Juncu	olo Ado	ntabla	
1	T		1200	ivianno	ie Auo	ptable	43	1200	Widnin	ole Auo	ptable	
				<u>Simul</u>	ation Se	<u>ttings</u>						
	Painfall	Methodol		2			cı	vin Staar	dy State	v		
	Nannan		ion Sci	v Stland and	Iroland		Jr Do	wn Tim	y State	240		
			(1011 SCC 2001 17		Irelanu		an Du		(m^{3}/h_{2})	240		
			IIII) 17. o. D. O.	.000		Add		Storage		0.0		
		RdU	0-K 0.3				IECK DI	Ischarge	Kale(S)	X		
		Summer	CV 1.0	00		Cn	еск Dis	scnarge	volume	х		
	A	nalysis Spo	eed No	rmai								
				~								
15 20	60	420	100	Stor	m Durat	ions	c 0 0	720	0.00	1 4 4 0	24.60	
15 30	60	120	180	240 3	60 4	480	600	720	960	1440	2160	
	Re	eturn Peri	od Clin	nate Chang	ge Add	itional A	rea /	Addition	al Flow			
		(years)		(CC %)		(A %)		(Q	%)			
		••	1	. ,	0	. ,	0	1-4	. 0			
			30	2	20		0		n N			
		1	00	2	20		0 0		0 0			
		1		2			5		0			

	Report by:		File: Temple Hill	v1.7 (20%cc).p	Page 8			
ALISENAY ES	JJ Campbell		Network: S					
			Model: Leonard	o Rigui				
			15/11/2021					
	<u>Node ATT</u>	/HB Z1 Online	<u>e Hydro-Brake[®] C</u>	<u>ontrol</u>				
ſ	Flap Valve x		Objective	(HE) Minimise	upstream storage			
Replaces Downst	ream Link √		Sump Available	\checkmark				
Invert	Level (m) 16.000	1	Product Number	CTL-SHE-0090	-4100-1400-4100			
Design [Depth (m) 1.400	Min Out	let Diameter (m)	0.150				
Design	Flow (l/s) 4.1	Min Node	e Diameter (mm)	1200				
	Node ATT	/HB Z2 Online	e Hvdro-Brake® C	ontrol				
F	Flap Valve x		Objective	(HE) Minimise	upstream storage			
Replaces Downst	ream Link 🗸	Sump Available	\checkmark					
Invert	Level (m) 11.440	Product Number	CTL-SHE-0082	-4100-2110-4100				
Design [Depth (m) 2.110	Min Out	let Diameter (m)	0.100				
Design	Flow (l/s) 4.1	Min Node	Diameter (mm)	1200				
	<u>Node ATT/</u>	HB Z1 Depth	/Area Storage Str	ucture				
Deep lef Coofficier	nt (m (hm) 0.00000	Cofoty Fo	ator 2.0	luo vout l	aval (m) 16,000			
Side Inf Coefficier	nt (m/nr) = 0.00000	Safety Fa	ctor 2.0	invert	Lever (m) 16.000			
Side III Coefficier		PUIC	SILY 1.00 1	ine to nan emp	ty (mins)			
Depth	Area Inf Area	Depth Are	ea Inf Area	Depth Area	Inf Area			
(m)	(m²) (m²)	(m) (m	²) (m²)	(m) (m²)	(m²)			
0.000	525.0 0.0	1.400 525	0.0	1.401 0.0	0.0			
	<u>Node ATT/</u>	HB Z2 Depth	/Area Storage Str	ucture				
Base Inf Coefficier	nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Invert	Level (m) 11.440			
Side Inf Coefficier	nt (m/hr) 0.00000	Porc	osity 1.00 T	ime to half emp	ty (mins)			
	Area Inf Area	Depth Are	ea Inf Area	Depth Area	Inf Area			
Depth	(m^2) (m^2)	(m) (m	²) (m²)	(m) (m²)	(m²)			
Depth (m)	(11) (11)			2 4 4 4	0.0			

	Report by:			File: Te	mple Hill	v1.7 (20%cc	:).p Page	9
CALICELAAV	JJ Campbell			Netwo	rk: S			
CAUSEVVAI				Model:	Leonard	o Rigui		
				15/11/	2021			
Res	ults for 1 year	Critical S	torm Dur	ation. Lo	owest ma	ss balance:	<u>99.63%</u>	
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m ³)	(m³)	
960 minute summer	2	630	10.636	0.036	3.1	0.0000	0.0000	ОК
960 minute summer	3	630	10.713	0.038	3.1	0.0426	0.0000	ОК
960 minute summer	4	630	10.851	0.031	3.1	0.0350	0.0000	ОК
960 minute summer	6	630	11.294	0.044	3.1	0.0501	0.0000	ОК
960 minute summer	ATT/HB Z2	660	11.793	0.353	15.2	129.7419	0.0000	SURCHARGED
15 minute summer	9	12	13.505	0.105	75.4	0.1501	0.0000	ОК
15 minute summer	10	12	13.786	0.176	69.5	0.2522	0.0000	ОК
15 minute summer	11	12	13.932	0.172	52.1	0.1944	0.0000	ОК
15 minute summer	12	12	14.107	0.187	50.8	0.2120	0.0000	ОК
15 minute summer	13	11	14.253	0.173	43.0	0.1952	0.0000	ОК
15 minute summer	14	10	14.650	0.100	16.6	0.3786	0.0000	ОК
15 minute summer	15	11	13.813	0.150	28.4	0.1697	0.0000	ОК
15 minute summer	16	10	15.566	0.066	17.0	0.0741	0.0000	ОК
15 minute summer	J6	11	13.816	0.125	12.3	0.0000	0.0000	ОК
15 minute summer	18	10	15.037	0.037	5.1	0.0420	0.0000	ОК
15 minute summer	J7	11	13.819	0.069	7.4	0.0000	0.0000	ОК
15 minute summer	20	10	15.557	0.032	7.4	0.0363	0.0000	ОК
1440 minute summer	21	960	12.796	0.026	3.9	0.0000	0.0000	ОК
1440 minute summer	22	960	13.526	0.026	3.9	0.0297	0.0000	ОК
1440 minute summer	23	960	13.748	0.048	3.9	0.0548	0.0000	ОК
1440 minute summer	24	960	15.932	0.032	3.9	0.0362	0.0000	ОК
1440 minute summer	25	960	16.032	0.062	3.9	0.0707	0.0000	ОК
1440 minute summer	ATT/HB Z1	960	16.324	0.324	14.1	170.8674	0.0000	SURCHARGED
15 minute summer	27	10	16.367	0.317	101.3	0.5602	0.0000	ОК
15 minute summer	28	11	16.378	0.306	97.7	0.5411	0.0000	ОК
Link Event	us	Link	20	0	tflow \	/elocity Fl	ow/Can	Link Discharge
						/ / /	5.17 Cup	

(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
960 minute summer	3	3	2	3.1	0.749	0.055	0.0263	164.8
960 minute summer	4	4	3	3.1	0.828	0.040	0.0237	
960 minute summer	6	6	4	3.1	0.723	0.077	0.3009	
960 minute summer	ATT/HB Z2	Hydro-Brake [®]	6	3.1				
15 minute summer	9	9	ATT/HB Z2	75.6	3.089	0.162	0.8762	
15 minute summer	10	10	J8	69.8	1.411	0.429	0.9458	
15 minute summer	11	11	10	52.7	1.266	0.541	0.8274	
15 minute summer	12	12	11	50.2	1.141	0.675	1.5580	
15 minute summer	13	13	12	42.7	0.969	0.590	1.6471	
15 minute summer	14	14	J1	16.4	0.742	0.207	0.2127	
15 minute summer	15	15	ATT/HB Z2	28.5	0.889	0.431	0.0985	
15 minute summer	16	16	15	16.6	1.750	0.181	0.5367	
15 minute summer	J6	17	15	12.0	0.391	0.184	0.2565	
15 minute summer	18	18	J6	5.1	1.737	0.292	0.0621	
15 minute summer	J7	19	J6	7.2	0.384	0.111	0.3456	
15 minute summer	20	20	J7	7.4	1.157	0.044	0.1197	
1440 minute summer	22	22	21	3.9	1.541	0.027	0.0250	263.6
1440 minute summer	23	23	22	3.9	0.905	0.087	0.1174	
1440 minute summer	24	24	23	3.9	0.814	0.044	0.3661	
1440 minute summer	25	25	24	3.9	0.646	0.162	0.1976	
1440 minute summer	ATT/HB Z1	Hydro-Brake [®]	25	3.9				
15 minute summer	27	27	ATT/HB Z1	105.4	2.281	0.314	0.7103	
15 minute summer	28	28	27	101.3	1.050	0.580	2.2104	

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

Results for 1	year Critical	Storm Duration.	Lowest mass	balance: 99.63%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	29	11	16.419	0.300	93.4	0.4293	0.0000	OK
15 minute summer	30	11	16.473	0.288	96.7	0.5092	0.0000	OK
15 minute summer	31	12	16.496	0.182	42.0	0.3221	0.0000	OK
15 minute summer	32	11	17.165	0.065	18.9	0.0737	0.0000	OK
15 minute summer	33	11	18.054	0.054	13.2	0.0610	0.0000	OK
15 minute summer	34	10	20.158	0.058	13.4	0.0654	0.0000	OK
15 minute summer	35	11	20.238	0.038	1.8	0.0431	0.0000	ОК
15 minute summer	36	11	16.551	0.101	16.7	0.3847	0.0000	OK
15 minute summer	37	10	16.712	0.112	42.9	0.1599	0.0000	ОК
15 minute summer	38	10	17.845	0.093	19.3	0.1054	0.0000	OK
15 minute summer	39	10	16.905	0.055	13.7	0.0626	0.0000	ОК
15 minute summer	40	10	17.935	0.035	5.4	0.0399	0.0000	OK
15 minute summer	41	10	16.725	0.675	46.0	0.7629	0.0000	SURCHARGED
15 minute summer	42	10	16.778	0.708	38.4	0.8006	0.0000	SURCHARGED
15 minute summer	43	10	18.224	0.144	28.6	0.1627	0.0000	OK
15 minute summer	44	10	20.335	0.035	1.8	0.0400	0.0000	ОК
15 minute summer	1	10	18.713	0.063	19.6	0.0714	0.0000	ОК
15 minute summer	45	10	18.062	0.062	8.4	0.0707	0.0000	ОК
15 minute summer	46	1	18.197	0.000	0.0	0.0000	0.0000	ОК
15 minute summer	47	1	17.850	0.000	0.0	0.0000	0.0000	ОК
15 minute summer	48	10	17.056	0.056	13.0	0.0632	0.0000	ОК
15 minute summer	J1	10	14.612	0.111	23.5	0.0000	0.0000	ОК
15 minute summer	5	10	15.633	0.033	7.2	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	29	29	28	97.7	0.949	0.641	2.3684	
15 minute summer	30	30	29	93.4	0.881	0.614	3.2243	
15 minute summer	31	31	30	38.4	0.519	0.253	4.7899	
15 minute summer	32	32	31	19.0	1.008	0.184	0.4387	
15 minute summer	33	33	32	13.2	1.576	0.127	0.1897	
15 minute summer	34	34	33	13.2	1.739	0.138	0.4827	
15 minute summer	35	35	34	1.7	0.367	0.143	0.1023	
15 minute summer	36	36	31	16.2	0.598	0.251	1.2849	
15 minute summer	37	37	30	42.4	0.872	0.198	2.1460	
15 minute summer	38	38	J5	19.2	1.626	0.213	0.2696	
15 minute summer	39	39	30	13.6	0.792	0.133	0.4160	
15 minute summer	40	40	39	5.3	0.939	0.054	0.1657	
15 minute summer	41	41	ATT/HB Z1	62.0	1.701	1.078	0.6743	
15 minute summer	42	42	41	46.0	1.156	1.180	0.1407	
15 minute summer	43	43	J4	28.3	0.935	0.700	0.6398	
15 minute summer	44	35a	35	1.8	0.549	0.118	0.0457	
15 minute summer	1	1	43	19.5	1.099	0.173	0.2197	
15 minute summer	45	45	12	8.3	1.242	0.331	0.0851	
15 minute summer	46	46	29	0.0	0.000	0.000	0.0000	
15 minute summer	47	47	38	0.0	0.000	0.000	0.0334	
15 minute summer	48	48	37	13.0	1.285	0.295	0.0662	
15 minute summer	J1	J1	J2	23.3	0.919	0.295	0.7867	
15 minute summer	5	5	J1	7.2	1.318	0.104	0.0623	

File: Temple Hill v1.7 (20%cc).p Network: S

Page 11

Model: Leonardo Rigui 15/11/2021 Results for 1 year Critical Storm Duration. Lowest mass balance: 99.63%

Node Eve	ent	US Noc	le	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute su	ummer	7		10	15.542	0.042	5.8	0.0000	0.0000	ОК	
15 minute su	ummer	J2		11	14.469	0.124	29.0	0.0000	0.0000	OK	
15 minute su	ummer	J3		11	14.329	0.153	37.5	0.0000	0.0000	ОК	
15 minute su	ummer	8		10	16.553	0.053	8.9	0.0000	0.0000	OK	
15 minute su	ummer	26		10	17.543	0.043	8.4	0.0000	0.0000	OK	
15 minute su	ummer	49		10	18.525	0.050	10.4	0.0000	0.0000	OK	
15 minute su	ummer	J4		11	18.129	0.179	38.7	0.0000	0.0000	OK	
15 minute su	ummer	Depth/A	Area 1	10	17.253	0.053	6.9	0.0000	0.0000	OK	
15 minute su	ummer	J5		10	17.176	0.082	26.1	0.0000	0.0000	ОК	
15 minute su	ummer	J8		12	13.652	0.169	69.8	0.0000	0.0000	OK	
15 minute su	ummer	19		12	13.584	0.167	70.1	0.0000	0.0000	OK	
15 minute su	ummer	17		1	16.480	0.000	0.0	0.0000	0.0000	OK	
15 minute su	ummer	19		1	15.686	0.000	0.0	0.0000	0.0000	ОК	
Link Event	U	JS	Li	nk	DS	Outflow	Velocity	Flow/Ca	ap Lin	k	Discharge
(Upstream Depth)	No	ode			Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	7		7a		J2	5.8	1.456	0.16	51 0.02	258	
15 minute summer	J2		J2		J3	29.0	0.912	0.36	58 1.06	523	
15 minute summer	J3		J3		13	37.6	0.964	0.47	76 0.73	354	
15 minute summer	8		8		J3	8.9	1.633	0.24	18 0.03	321	
15 minute summer	26		26a		39	8.4	1.675	0.17	77 0.04	164	
15 minute summer	49		49		J4	10.4	1.008	0.23	35 0.09	982	
15 minute summer	J4		J4		42	38.4	1.184	0.94	14 0.63	366	
15 minute summer	Depth,	/Area 1	Depth/	/Area 1	J5	6.9	0.896	0.22	29 0.02	287	
15 minute summer	J5		J5		37	25.9	1.583	0.28	.27	705	
15 minute summer	J8		J8		J9	70.1	1.467	0.43	30 0.47	738	
15 minute summer	19		J9		9	70.2	1.948	0.42	0.08	388	
15 minute summer	17		17a		J8	0.0	0.000	0.00	0.00	000	
15 minute summer	19		19a		J9	0.0	0.000	0.00	0.00	000	

File: Temple Hill v1.7 (20%cc).pPage 12Network: SModel: Leonardo Rigui

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.63%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	2	240	10.636	0.036	3.1	0.0000	0.0000	ОК
30 minute summer	3	239	10.713	0.038	3.1	0.0426	0.0000	ОК
30 minute summer	4	239	10.851	0.031	3.1	0.0350	0.0000	ОК
30 minute summer	6	237	11.294	0.044	3.1	0.0501	0.0000	ОК
1440 minute summer	ATT/HB Z2	1200	12.489	1.049	25.6	385.4251	0.0000	SURCHARGED
15 minute summer	9	11	13.569	0.169	176.2	0.2412	0.0000	ОК
15 minute summer	10	11	13.926	0.316	161.1	0.4528	0.0000	ОК
15 minute summer	11	12	14.202	0.442	113.9	0.5004	0.0000	SURCHARGED
15 minute summer	12	12	14.618	0.698	108.5	0.7900	0.0000	SURCHARGED
15 minute summer	13	12	14.918	0.838	89.9	0.9474	0.0000	SURCHARGED
15 minute summer	14	12	15.209	0.659	44.2	2.5061	0.0000	SURCHARGED
15 minute summer	15	11	13.934	0.271	75.7	0.3062	0.0000	ОК
15 minute summer	16	10	15.610	0.110	45.3	0.1249	0.0000	ОК
15 minute summer	J6	11	13.941	0.250	32.1	0.0000	0.0000	ОК
15 minute summer	18	10	15.067	0.067	13.6	0.0754	0.0000	ОК
15 minute summer	J7	11	13.944	0.194	19.8	0.0000	0.0000	ОК
15 minute summer	20	10	15.577	0.052	19.9	0.0590	0.0000	ОК
60 minute summer	21	212	12.796	0.026	4.0	0.0000	0.0000	ОК
60 minute summer	22	212	13.526	0.026	4.0	0.0300	0.0000	ОК
60 minute summer	23	215	13.749	0.049	4.0	0.0553	0.0000	ОК
60 minute summer	24	211	15.932	0.032	4.0	0.0365	0.0000	ОК
60 minute summer	25	45	16.033	0.063	4.0	0.0712	0.0000	ОК
1440 minute summer	ATT/HB Z1	1290	16.918	0.918	29.6	483.4901	0.0000	SURCHARGED
1440 minute summer	27	1290	16.918	0.868	20.9	1.5335	0.0000	SURCHARGED
1440 minute summer	28	1290	16.918	0.846	21.2	1.4946	0.0000	SURCHARGED

Link Event	US Nodo	Link	DS Nodo	Outflow	Velocity	Flow/Cap	Link	Discharge
(Opsilealli Deptil)	Noue		Noue	(1/5)	(11/5)		voi (iii)	voi (iii)
30 minute summer	3	3	2	3.1	0.749	0.055	0.0263	47.8
30 minute summer	4	4	3	3.1	0.828	0.040	0.0237	
30 minute summer	6	6	4	3.1	0.724	0.077	0.3009	
1440 minute summer	ATT/HB Z2	Hydro-Brake [®]	6	3.1				
15 minute summer	9	9	ATT/HB Z2	176.4	3.841	0.377	2.0821	
15 minute summer	10	10	18	159.8	1.681	0.981	1.8262	
15 minute summer	11	11	10	114.2	1.623	1.174	1.3749	
15 minute summer	12	12	11	108.8	1.545	1.462	2.4924	
15 minute summer	13	13	12	89.9	1.277	1.243	2.6326	
15 minute summer	14	14	J1	40.3	0.899	0.510	0.6793	
15 minute summer	15	15	ATT/HB Z2	76.4	1.249	1.154	0.1858	
15 minute summer	16	16	15	44.9	1.986	0.490	1.5184	
15 minute summer	J6	17	15	32.2	0.496	0.496	0.5276	
15 minute summer	18	18	J6	13.5	1.849	0.779	0.1031	
15 minute summer	J7	19	J6	19.1	0.407	0.296	0.9562	
15 minute summer	20	20	J7	19.8	1.301	0.119	0.3760	
60 minute summer	22	22	21	4.0	1.548	0.028	0.0252	64.5
60 minute summer	23	23	22	4.0	0.909	0.088	0.1187	
60 minute summer	24	24	23	4.0	0.818	0.044	0.3702	
60 minute summer	25	25	24	4.0	0.650	0.164	0.1998	
1440 minute summer	ATT/HB Z1	Hydro-Brake [®]	25	4.0				
1440 minute summer	27	27	ATT/HB Z1	20.7	0.771	0.062	2.2364	
1440 minute summer	28	28	27	20.9	0.377	0.120	3.5963	

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.63%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	:	Status
1 4 4 0	NODE	e (mins) (m)	(m)	(I/S)	VOI (m ²)	(m ⁻)		
1440 minute summer	29	1290	J 16.918	0.799	21.7	1.1432	0.0000	J SUR	CHARGED
15 minute summer	30	1	1 16.953	0.768	249.5	1.3568	0.0000	J SUR	CHARGED
15 minute summer	31	1:	1 17.027	0./13	107.4	1.2606	0.0000	J SUR	CHARGED
15 minute summer	32	1:	1 17.251	0.151	50.8	0.1709	0.000) OK	
15 minute summer	33	1:	1 18.090	0.090	35.4	0.1015	0.000) OK	
15 minute summer	34	10	20.198	0.098	35.9	0.1107	0.000) OK	
15 minute summer	35	1:	1 20.264	0.064	4.6	0.0719	0.000) OK	
15 minute summer	36	11	1 17.070	0.620	44.5	2.3584	0.000) SUR	CHARGED
15 minute summer	37	1:	1 17.075	0.475	111.3	0.6792	0.000) SUR	CHARGED
15 minute summer	38	10	0 17.896	0.144	51.5	0.1631	0.000) OK	
15 minute summer	39	12	2 17.006	0.156	36.7	0.1764	0.000) ОК	
15 minute summer	40	10	0 17.957	0.057	14.4	0.0649	0.000) ОК	
1440 minute summer	41	1290	0 16.918	0.868	8.9	0.9816	0.000) SUR	CHARGED
15 minute summer	42	5	8 17.013	0.943	96.4	1.0663	0.000) SUR	CHARGED
15 minute summer	43	1	1 19.260	1.180	72.3	1.3351	0.000) SUR	CHARGED
15 minute summer	44	1(20.359	0.059	4.7	0.0671	0.000	о ок	
15 minute summer	1	1	1 19.414	0.764	52.4	0.8635	0.000) SUR	CHARGED
15 minute summer	45	1(0 18.123	0.123	22.5	0.1387	0.000	ОК	
15 minute summer	46	-	1 18.197	0.000	0.0	0.0000	0.000) ОК	
15 minute summer	47	1(17 897	0.047	0.8	0.0528	0.0000		
15 minute summer	47	1	1 17 373	0.047	34.8	0.0520	0.0000		CHARGED
15 minute summer	40	1.	1 17.373	0.575	59.5	0.4224	0.0000	, 50M	
15 minute summer	J1	1.	2 15.198	0.697	58.5	0.0000	0.0000) SUR	CHARGED
15 minute summer	5	10	0 15.654	0.054	19.3	0.0000	0.000) OK	
Link Event	US	Link	DS	Outflow	Velocit	y Flow/	Сар	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		V	ol (m³)	Vol (m ³)
1440 minute summer	29	29 2	28	21.2	0.39	0 0.	139 :	3.3043	
15 minute summer	30	30 2	29	251.3	1.58	6 1.	651 4	4.6559	
15 minute summer	31	31 3	30	104.4	0.65	9 0.	687	9.1102	
15 minute summer	32	32 3	31	49.2	1.36	4 0.4	478	0.6891	
15 minute summer	33	33 3	32	35.3	1.95	4 0.	338	0.4865	
15 minute summer	34	34 3	33	35.4	2.27	0 0.	373	0.9882	
15 minute summer	35	35 3	34	4.6	0.48	4 0.1	378	0.2017	
15 minute summer	36	36	31	39.8	0.71	0 0.	619	2.8271	
15 minute summer	37	37 3	30	103 5	1 10	5 0,	484	4 0044	
15 minute summer	38	38 1	5	51.0	2 03	0 0. 1 0	566	0 6725	
15 minute summer	39	30 3	20	34.0	1.05	- 0. 2 0.	335	0 6077	
15 minute summer	10	10 3	20	1/1 3	1.05	2 0.	1/13	0 5211	
11/10 minute summer	- 1 0 /11	/1 /	, , \TT/ЦD 71	0 O	1.22 0 E1	ς η.	155	1 2011	
15 minute summer	41 42	41 F	N I/∏D ∠⊥ 11	0.9	0.51	ວ U. ເ າ	175	1.2344 0 1/07	
15 minute summer	42 12	42 4 10 1	+⊥ /\	90.4 71 0	2.42	J 2.4	766	0 0116	
15 minute summer	45	45 J	4) F	/1.3	1.79	4 I. 7 0.1		0.0024	
15 minute summer	44	358 3		4.6	0.69	/ U.	509 (425 (J.0931	
15 minute summer	T	1 4	13	49.1	1.23	4 0.4	435 (J.4868	

22.3

0.0

-0.8

32.6

55.8

19.3

1.524

0.000

-0.092

1.903

1.127

1.397

0.884

0.000

-0.036

0.740

0.707

0.279

0.1849

0.0000

0.0642

0.1164

2.1693

0.0866

12

29

38

37

J2

J1

45

46

47

48

J1

5

45

46

47

48

J1

5

15 minute summer

CAUSEWAY

File: Temple Hill v1.7 (20%cc).pPage 14Network: SModel: Leonardo Rigui15/11/2021

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.63%

Node Event		US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	itus
15 minute summ	ner 7	,	10	15.573	0.073	15.5	0.0000	0.0000	ОК	
15 minute summ	ner Jä	2	12	15.135	0.790	70.3	0.0000	0.0000	SURCH	ARGED
15 minute summ	ner Jä	3	12	15.034	0.858	87.9	0.0000	0.0000	SURCH	ARGED
15 minute summ	ner 8		10	16.597	0.097	23.9	0.0000	0.0000	ОК	
15 minute summ	ner 2	6	10	17.575	0.075	22.4	0.0000	0.0000	ОК	
15 minute summ	ner 4	.9	11	19.023	0.548	27.7	0.0000	0.0000	SURCH	ARGED
15 minute summ	ner J	4	11	18.799	0.849	97.1	0.0000	0.0000	SURCH	ARGED
15 minute summ	ner D	epth/Area	1 12	17.356	0.156	18.5	0.0000	0.0000	SURCH	ARGED
15 minute summ	ner J	5	12	17.314	0.220	69.5	0.0000	0.0000	ОК	
15 minute summ	ner Jä	8	12	13.776	0.293	159.8	0.0000	0.0000	ОК	
15 minute summ	ner J	9	12	13.705	0.288	160.5	0.0000	0.0000	ОК	
15 minute summ	ner 1	7	1	16.480	0.000	0.0	0.0000	0.0000	ОК	
15 minute summ	ner 1	9	1	15.686	0.000	0.0	0.0000	0.0000	ОК	
Link Event		US	Link	DS	Outflo	w Velo	ocity Flow	w/Cap	Link	Discharge
(Upstream Depth)	N	lode		Node	(l/s)	(m	/s)		Vol (m³)	Vol (m ³)
15 minute summer	7	7	'a	J2	15	.4 1	.882	0.432	0.0534	
15 minute summer	J2	J	2	J3	65	.4 1	.041	0.830	2.3497	
15 minute summer	J3	J	3	13	78	.2 1	.111	0.989	1.3274	
15 minute summer	8	8	3	J3	23	.8 2	.067	0.666	0.0681	
15 minute summer	26	2	26a	39	22	.4 2	.178	0.473	0.1184	
15 minute summer	49	Z	19	J4	25	.8 1	.463	0.585	0.1524	
15 minute summer	J4	J	4	42	96	.4 2	.425	2.370	0.7731	
15 minute summer	Deptl	h/Area 1 [Depth/Area 1	1 J5	18	.4 1	.145	0.613	0.0658	
15 minute summer	J5	J	5	37	68	.5 2	.076	0.760	0.6550	
15 minute summer	J8	J	8	J9	160	.5 1	.752	0.985	0.9087	
15 minute summer	J9	J	9	9	160	.8 2	.346	0.966	0.1694	
15 minute summer	17	1	.7a	J8	0	.0 0	.000	0.000	0.0000	
15 minute summer	19	1	.9a	J9	0	.0 0	.000	0.000	0.0000	

File: Temple Hill v1.7 (20%cc).pPage 15Network: SModel: Leonardo Rigui15/11/2021

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.63%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m ³)	Status
1440 minute summer	2	1290	10 637	0.037	3.4	0 0000	0.0000	ОК
1440 minute summer	2	1290	10 714	0.039	3.4	0 0440	0.0000	OK
1440 minute summer	4	1290	10.852	0.032	3.4	0.0361	0.0000	OK
1440 minute summer	6	1290	11 296	0.046	3.4	0.0517	0.0000	OK
1440 minute summer	ATT/HB 72	1290	12.803	1.363	31.7	500.9394	0.0000	SURCHARGED
15 minute summer	9	11	13.593	0.193	230.6	0.2769	0.0000	OK
15 minute summer	10	11	14.075	0.465	201.4	0.6661	0.0000	SURCHARGED
15 minute summer	11	12	14.478	0.718	138.7	0.8121	0.0000	SURCHARGED
15 minute summer	12	12	15.092	1.172	132.2	1.3252	0.0000	SURCHARGED
15 minute summer	13	12	15.517	1.437	107.6	1.6249	0.0000	SURCHARGED
15 minute summer	14	12	15.916	1.366	57.4	5.1929	0.0000	FLOOD RISK
15 minute summer	15	11	13.991	0.328	97.5	0.3704	0.0000	SURCHARGED
15 minute summer	16	10	15.629	0.129	58.8	0.1464	0.0000	ОК
15 minute summer	J6	11	14.006	0.315	41.0	0.0000	0.0000	SURCHARGED
15 minute summer	18	11	15.195	0.195	17.6	0.2200	0.0000	SURCHARGED
15 minute summer	J7	11	14.013	0.263	25.7	0.0000	0.0000	ОК
15 minute summer	20	10	15.584	0.059	25.8	0.0673	0.0000	ОК
30 minute summer	21	222	12.796	0.026	4.0	0.0000	0.0000	ОК
30 minute summer	22	222	13.526	0.026	4.0	0.0300	0.0000	ОК
30 minute summer	23	225	13.749	0.049	4.0	0.0553	0.0000	ОК
30 minute summer	24	221	15.932	0.032	4.0	0.0365	0.0000	ОК
30 minute summer	25	25	16.033	0.063	4.0	0.0712	0.0000	ОК
2160 minute summer	ATT/HB Z1	1740	17.203	1.203	28.0	633.7805	0.0000	SURCHARGED
2160 minute summer	27	1740	17.203	1.153	20.2	2.0376	0.0000	SURCHARGED
2160 minute summer	28	1740	17.203	1.131	20.2	1.9988	0.0000	SURCHARGED

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
1440 minute summer	3	3	2	3.4	0.762	0.059	0.0276	274.8
1440 minute summer	4	4	3	3.4	0.842	0.042	0.0248	
1440 minute summer	6	6	4	3.4	0.737	0.082	0.3149	
1440 minute summer	ATT/HB Z2	Hydro-Brake [®]	6	3.4				
15 minute summer	9	9	ATT/HB Z2	219.7	4.035	0.470	2.5110	
15 minute summer	10	10	J8	200.7	1.819	1.232	2.0894	
15 minute summer	11	11	10	138.9	1.973	1.428	1.3749	
15 minute summer	12	12	11	132.1	1.877	1.776	2.4924	
15 minute summer	13	13	12	109.9	1.561	1.519	2.6326	
15 minute summer	14	14	J1	48.8	0.901	0.619	0.6793	
15 minute summer	15	15	ATT/HB Z2	97.9	1.416	1.480	0.2016	
15 minute summer	16	16	15	58.4	1.960	0.636	1.7943	
15 minute summer	J6	17	15	41.0	0.583	0.633	0.5729	
15 minute summer	18	18	J6	16.3	2.122	0.936	0.1207	
15 minute summer	J7	19	J6	25.2	0.404	0.390	1.1698	
15 minute summer	20	20	J7	25.7	1.338	0.154	0.4189	
30 minute summer	22	22	21	4.0	1.548	0.028	0.0252	59.8
30 minute summer	23	23	22	4.0	0.909	0.088	0.1187	
30 minute summer	24	24	23	4.0	0.862	0.044	0.3702	
30 minute summer	25	25	24	4.0	0.650	0.164	0.1998	
2160 minute summer	ATT/HB Z1	Hydro-Brake®	25	4.0				
2160 minute summer	27	27	ATT/HB Z1	20.1	0.619	0.060	2.2364	
2160 minute summer	28	28	27	20.2	0.345	0.116	3.5963	

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

CAUSEWAY

15 minute summer

45

46

47

48

J1

5

45

46

47

48

J1

5

12

29

38

37

J2

J1

File: Temple Hill v1.7 (20%cc).p Network: S Model: Leonardo Rigui 15/11/2021

Page 16

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.63%

2160 minute summer 29 1740 17.203 1.084 20.3 1.5515 0.0000 SURCHARGED 15 minute summer 30 12 17.283 1.098 313.9 1.9408 0.0000 SURCHARGED 15 minute summer 32 12 17.744 0.644 66.1 0.7279 0.0000 SURCHARGED 15 minute summer 33 11 18.113 0.113 46.1 0.1281 0.0000 OK 15 minute summer 35 11 20.214 0.014 6.0 0.929 0.0000 SURCHARGED 15 minute summer 36 12 17.487 1.037 66.0 3.9400 0.0000 SURCHARGED 15 minute summer 38 12 17.487 1.037 66.0 3.9400 0.0000 SURCHARGED 15 minute summer 38 12 17.486 0.646 1.20.0 SURCHARGED 15 minute summer 41 17.020 1.153 7.9 1.3042 0.0000 SURCHARGED 15 minute summer 42 1740 17.203 1.153 <th>Node Event</th> <th>US Node</th> <th>Pea e (mir</th> <th>ak ns)</th> <th>Level (m)</th> <th>Depth (m)</th> <th>Inflow (I/s)</th> <th>Node Vol (m³)</th> <th>Flo (m</th> <th>od ı³)</th> <th>S</th> <th>itatus</th>	Node Event	US Node	Pea e (mir	ak ns)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flo (m	od ı³)	S	itatus
15 minute summer 30 12 17.283 1.098 313.9 1.9408 0.0000 SURCHARGED 15 minute summer 31 12 17.345 1.081 130.4 1.9095 0.0000 SURCHARGED 15 minute summer 33 11 18.113 0.113 46.1 0.1281 0.0000 OK 15 minute summer 34 10 20.214 0.114 46.6 0.1292 0.0000 OK 15 minute summer 36 12 17.447 1.037 66.0 0.39400 0.0000 SURCHARGED 15 minute summer 37 12 17.466 0.866 129.6 1.2391 0.0000 SURCHARGED 15 minute summer 38 12 17.424 0.574 46.4 0.6496 0.0000 SURCHARGED 15 minute summer 41 1740 17.203 1.133 8.0 1.2817 0.0000 SURCHARGED 15 minute summer 43 11 19.976 1.896 92.6 2.1438 0.000 FLOOD RISK 15 minute summer 45 <	2160 minute summer	29	17	40	17.203	1.084	20.3	1.5515	0.00	000	SUR	CHARGED
15 minute summer 31 12 17.395 1.081 130.4 1.9095 0.0000 SURCHARGED 15 minute summer 32 12 17.744 0.644 66.1 0.7279 0.0000 SURCHARGED 15 minute summer 34 10 20.214 0.114 46.6 0.1292 0.0000 OK 15 minute summer 35 11 20.274 0.074 6.0 0.3940 0.0000 SURCHARGED 15 minute summer 36 12 17.487 1.037 66.0 3.9400 0.0000 SURCHARGED 15 minute summer 38 12 17.424 0.574 46.4 0.6496 0.0000 SURCHARGED 15 minute summer 40 10 17.66 0.666 18.7 0.071 0.000 SURCHARGED 2160 minute summer 41 1740 17.203 1.133 8.0 1.2817 0.000 SURCHARGED 15 minute summer 43 11 19.976 1.836 9.26 2.1438 0.000 SURCHARGED 15 minute summer 44	15 minute summer	30		12	17.283	1.098	313.9	1.9408	0.00	000	SUR	CHARGED
15 minute summer 32 12 17.74 0.644 66.1 0.7279 0.0000 SURCHARGED 15 minute summer 33 11 18.113 0.114 46.6 0.1281 0.0000 OK 15 minute summer 35 11 20.214 0.074 6.0 0.8322 0.0000 OK 15 minute summer 36 12 17.467 0.066 1.290 0.0000 SURCHARGED 15 minute summer 38 12 17.467 0.666 18.7 0.0700 SURCHARGED 15 minute summer 39 12 17.424 0.574 46.4 0.6496 0.0000 SURCHARGED 15 minute summer 41 1740 17.203 1.133 7.9 1.3042 0.0000 SURCHARGED 15 minute summer 43 11 19.976 1.896 92.6 2.1438 0.000 FLOD RISK 15 minute summer 1 11 20.269 0.069 6.1 0.0781 0.000 SURCHARGED 15 minute summer 1 18.1997 0.300 0.000 </td <td>15 minute summer</td> <td>31</td> <td></td> <td>12</td> <td>17.395</td> <td>1.081</td> <td>130.4</td> <td>1.9095</td> <td>0.00</td> <td>000</td> <td>SUR</td> <td>CHARGED</td>	15 minute summer	31		12	17.395	1.081	130.4	1.9095	0.00	000	SUR	CHARGED
15 minute summer 33 11 18.113 0.113 46.1 0.1281 0.0000 OK 15 minute summer 34 10 20.214 0.114 46.6 0.1222 0.0000 OK 15 minute summer 35 11 20.274 0.074 60.0 3.9400 0.0000 FLOOD RISK 15 minute summer 36 12 17.487 1.037 66.0 3.9400 0.0000 SURCHARGED 15 minute summer 38 12 18.188 0.436 66.9 0.4929 0.0000 SURCHARGED 15 minute summer 39 12 17.424 0.574 46.4 0.6496 0.0000 SURCHARGED 16 minute summer 41 1740 17.203 1.133 80 1.2817 0.0000 SURCHARGED 15 minute summer 43 11 19.976 1.886 9.2.6 2.1438 0.0000 SURCHARGED 15 minute summer 44 10 20.369 0.669 6.1 0.0781 0.0000 SURCHARGED 15 minute summer 45	15 minute summer	32		12	17.744	0.644	66.1	0.7279	0.00	000	SUR	CHARGED
15 minute summer 34 10 20.214 0.114 46.6 0.1292 0.0000 OK 15 minute summer 35 11 20.274 0.074 6.0 0.832 0.0000 CK 15 minute summer 36 12 17.487 1.037 66.0 3.9400 0.0000 SURCHARGED 15 minute summer 38 12 17.486 0.866 129.6 1.2391 0.0000 SURCHARGED 15 minute summer 39 12 17.424 0.574 46.4 0.6496 0.0000 SURCHARGED 15 minute summer 41 1740 17.203 1.153 7.9 1.3042 0.0000 SURCHARGED 15 minute summer 43 11 19.976 1.886 2.6 2.1438 0.0000 FLOOD RISK 15 minute summer 1 18.28 0.288 2.9.3 0.3252 0.0000 SURCHARGED 15 minute summer 1 18.28 0.288 2.9.3 0.3252 0.0000 OUCO SURCHARGED 15 minute summer 14 18.28 <t< td=""><td>15 minute summer</td><td>33</td><td></td><td>11</td><td>18.113</td><td>0.113</td><td>46.1</td><td>0.1281</td><td>0.00</td><td>000</td><td>ОК</td><td></td></t<>	15 minute summer	33		11	18.113	0.113	46.1	0.1281	0.00	000	ОК	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15 minute summer	34		10	20.214	0.114	46.6	0.1292	0.00	000	ОК	
15 minute summer 36 12 17.487 1.037 66.0 3.9400 0.0000 FLOOD RISK 15 minute summer 38 12 18.188 0.436 66.9 0.4929 0.0000 SURCHARGED 15 minute summer 38 12 17.424 0.574 66.9 0.4929 0.0000 SURCHARGED 15 minute summer 40 10 17.966 0.066 18.7 0.0741 0.0000 SURCHARGED 2160 minute summer 41 1740 17.203 1.133 8.0 1.2817 0.0000 SURCHARGED 15 minute summer 42 1740 17.203 1.133 8.0 1.2817 0.0000 SURCHARGED 15 minute summer 41 10 20.369 0.069 6.1 0.0781 0.0000 FLOOD RISK 15 minute summer 1 18.1828 0.288 29.3 0.3252 0.0000 SURCHARGED 15 minute summer 45 1 18.197 0.000 0.0 0.0000 SURCHARGED 15 minute summer 11 12.2 15.	15 minute summer	35		11	20.274	0.074	6.0	0.0832	0.00	000	ОК	
15 minute summer 37 12 17.466 0.866 129.6 1.2391 0.0000 SURCHARGED 15 minute summer 39 12 17.424 0.574 46.4 0.6496 0.0000 SURCHARGED 15 minute summer 40 10 17.966 0.066 18.7 0.0741 0.0000 SURCHARGED 2160 minute summer 41 1740 17.203 1.153 7.9 1.3042 0.0000 SURCHARGED 15 minute summer 43 11 19.976 1.896 92.6 2.1438 0.0000 FLOOD RISK 15 minute summer 1 11 20.269 0.69 6.1 0.0781 0.000 FLOOD RISK 15 minute summer 1 11.8.288 0.288 29.3 0.3252 0.0000 SURCHARGED 15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer 5 12 </td <td>15 minute summer</td> <td>36</td> <td></td> <td>12</td> <td>17.487</td> <td>1.037</td> <td>66.0</td> <td>3.9400</td> <td>0.00</td> <td>000</td> <td>FLOC</td> <td>DD RISK</td>	15 minute summer	36		12	17.487	1.037	66.0	3.9400	0.00	000	FLOC	DD RISK
15 minute summer 38 12 18.188 0.436 66.9 0.4929 0.0000 SURCHARGED 15 minute summer 39 12 17.424 0.574 46.4 0.6496 0.0000 SURCHARGED 15 minute summer 40 10 17.966 0.066 18.7 0.0741 0.0000 SURCHARGED 2160 minute summer 42 1740 17.203 1.133 8.0 1.2817 0.0000 SURCHARGED 15 minute summer 43 11 19.976 1.886 92.6 2.1438 0.0000 FLOOD RISK 15 minute summer 1 11 20.224 1.574 68.1 1.7799 0.0000 OK 15 minute summer 45 11 18.288 0.288 29.3 0.3252 0.0000 SURCHARGED 15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer 5 12 15.899 1.398 72.6 0.0000 0.0000 SURCHARGED 15 minute summer 30	15 minute summer	37		12	17.466	0.866	129.6	1.2391	0.00	000	SUR	CHARGED
15 minute summer 39 12 17.424 0.574 46.4 0.6496 0.000 SURCHARGED 15 minute summer 40 10 17.966 0.066 18.7 0.0741 0.0000 SURCHARGED 2160 minute summer 41 17.40 17.203 1.153 7.9 1.3042 0.0000 SURCHARGED 15 minute summer 43 11 19.976 1.896 92.6 2.1438 0.0000 FLOOD RISK 15 minute summer 44 10 20.369 0.069 6.1 0.0781 0.0000 FLOOD RISK 15 minute summer 1 11 20.224 1.574 68.1 1.7799 0.0000 FLOOD RISK 15 minute summer 46 1 18.197 0.000 0.0 0.0000 O.000 OK 15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer J1 12 15.899 1.398 72.6 0.0000 0.0000 SURCHARGED 15 minute summer J1	15 minute summer	38		12	18.188	0.436	66.9	0.4929	0.00	000	SUR	CHARGED
15 minute summer 40 10 17.966 0.066 18.7 0.0741 0.0000 OK 2160 minute summer 41 1740 17.203 1.153 7.9 1.3042 0.0000 SURCHARGED 2160 minute summer 42 1740 17.203 1.133 8.0 1.2817 0.0000 SURCHARGED 15 minute summer 43 11 19.976 1.896 92.6 2.1438 0.0000 FLOOD RISK 15 minute summer 44 10 20.369 0.069 6.1 0.0781 0.0000 OK 15 minute summer 45 11 18.288 0.288 29.3 0.3252 0.0000 SURCHARGED 15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer 48 11 17.958 0.958 45.2 1.0832 0.0000 SURCHARGED 15 minute summer 5 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED 15 minute summer 30 <	15 minute summer	39		12	17.424	0.574	46.4	0.6496	0.00	000	SUR	CHARGED
2160 minute summer 41 1740 17.203 1.153 7.9 1.3042 0.000 SURCHARGED 2160 minute summer 42 1740 17.203 1.133 8.0 1.2817 0.000 SURCHARGED 15 minute summer 43 11 19.976 1.896 92.6 2.1438 0.0000 FLOOD RISK 15 minute summer 44 10 20.369 0.069 6.1 0.0781 0.0000 OK 15 minute summer 45 11 18.288 0.288 29.3 0.3252 0.0000 SURCHARGED 15 minute summer 46 1 18.197 0.000 0.0 0.0000 SURCHARGED 15 minute summer 47 12 18.197 0.0341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer J1 12 15.996 0.395 25.0 0.0000 O.0000 SURCHARGED 15 minute summer J1 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED 15 minute summer J1 13	15 minute summer	40		10	17.966	0.066	18.7	0.0741	0.00	000	ОК	
2160 minute summer42174017.2031.1338.01.28170.0000SURCHARGED15 minute summer431119.9761.89692.62.14380.0000FLOOD RISK15 minute summer441020.3690.0696.10.07810.0000OK15 minute summer451118.2880.28229.30.32520.0000SURCHARGED15 minute summer46118.1970.0000.00.00000.0000OK15 minute summer471218.1910.3413.90.38580.0000SURCHARGED15 minute summer481117.9580.95845.21.08320.0000SURCHARGED15 minute summerJ11215.8991.39872.60.00000.0000SURCHARGED15 minute summerJ11215.9960.39525.00.00000.0000SURCHARGED15 minute summerJ11330131.00.8270.8629.11022160 minute summer303029315.01.9882.0704.655915 minute summer313130131.00.8270.4851.250815 minute summer33333245.41.8850.4350.674915 minute summer33333245.41.8850.4350.674915 minute summer36363150.60.7190.7872.82	2160 minute summer	41	17	40	17.203	1.153	7.9	1.3042	0.00	000	SUR	CHARGED
15 minute summer 43 11 19.976 1.896 92.6 2.1438 0.0000 FLOOD RISK 15 minute summer 44 10 20.369 0.069 6.1 0.0781 0.0000 OK 15 minute summer 1 11 20.224 1.574 68.1 1.7799 0.000 FLOOD RISK 15 minute summer 45 11 18.288 0.288 29.3 0.3252 0.000 SURCHARGED 15 minute summer 46 1 18.197 0.000 0.0000 0.0000 SURCHARGED 15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer 48 11 17.958 0.958 45.2 1.0832 0.0000 SURCHARGED 15 minute summer 5 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED 15 minute summer 30 30 29 315.0 1.988 2.070 4.6559 15 minute summer 31 31 30 131.0	2160 minute summer	42	17	40	17.203	1.133	8.0	1.2817	0.00	000	SUR	CHARGED
15 minute summer 44 10 20.369 0.069 6.1 0.0781 0.0000 OK 15 minute summer 1 11 20.224 1.574 68.1 1.7799 0.0000 FLOOD RISK 15 minute summer 45 11 18.288 0.288 29.3 0.3252 0.0000 SURCHARGED 15 minute summer 46 1 18.197 0.000 0.0 0.0000 SURCHARGED 15 minute summer 47 12 18.191 0.341 39 0.3858 0.0000 SURCHARGED 15 minute summer 48 11 17.958 0.958 45.2 1.0832 0.0000 SURCHARGED 15 minute summer J1 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED 15 minute summer J0 131.0 0.385 2.00 0.0000 0.0000 SURCHARGED 15 minute summer 30 29 29 28 20.2 0.363 0.133 3.3043 15 minute summer 31 31 30 131.0	15 minute summer	43		11	19.976	1.896	92.6	2.1438	0.00	000	FLOC	DD RISK
15 minute summer 1 11 20.224 1.574 68.1 1.7799 0.0000 FLOOD RISK 15 minute summer 45 11 18.288 0.288 29.3 0.3252 0.0000 SURCHARGED 15 minute summer 46 1 18.197 0.000 0.0 0.0000 0.0000 OK 15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer 48 11 17.958 0.958 45.2 1.0832 0.0000 SURCHARGED 15 minute summer J1 12 15.899 1.398 72.6 0.0000 0.0000 SURCHARGED 15 minute summer J0 Link DS Outflow Velocity Flow/Cap Link Discharge (Upstream Depth) Node Node (I/s) (m/s) Vol (m³) Vol (m³) Vol (m³) 2160 minute summer 31 31 30 29 315.0 1.988 2.070 4.6559 15 minute summer 31 31 3	15 minute summer	44		10	20.369	0.069	6.1	0.0781	0.00	000	ОК	
15 minute summer 45 11 18.288 0.288 29.3 0.3252 0.0000 SURCHARGED 15 minute summer 46 1 18.197 0.000 0.0 0.0000 0.0000 OK 15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer 48 11 17.958 0.958 45.2 1.0832 0.0000 SURCHARGED 15 minute summer J1 12 15.899 1.398 72.6 0.0000 0.0000 SURCHARGED 15 minute summer 5 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED 16 minute summer 29 29 28 20.2 0.363 0.133 3.3043 15 minute summer 31 31 30 131.0 0.827 0.862 9.1102 15 minute summer 32 32 34 18.5 0.435 0.6749 15 minute summer 33 33 32 45.4 1.885 0.435 0.6749	15 minute summer	1		11	20.224	1.574	68.1	1.7799	0.00	000	FLOC	DD RISK
15 minute summer 46 1 18.197 0.000 0.0 0.0000 0.0000 OK 15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer 48 11 17.958 0.958 45.2 1.0832 0.0000 SURCHARGED 15 minute summer J1 12 15.899 1.398 72.6 0.0000 0.0000 SURCHARGED 15 minute summer 5 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED 16 minute summer 5 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED 15 minute summer 30 29 28 20.2 0.363 0.133 3.3043 15 minute summer 31 31 30 131.0 0.827 0.862 9.1102 15 minute summer 32 32 31 60.8 1.529 0.591 0.8047 15 minute summer 33 33 32 45.4 1.885 0.435	15 minute summer	45		11	18.288	0.288	29.3	0.3252	0.00	000	SUR	CHARGED
15 minute summer 47 12 18.191 0.341 3.9 0.3858 0.0000 SURCHARGED 15 minute summer J1 12 15.899 1.398 72.6 0.0000 0.0000 SURCHARGED 15 minute summer J1 12 15.899 1.398 72.6 0.0000 0.0000 SURCHARGED 15 minute summer 5 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED Link Event (Upstream Depth) US Link DS Outflow Velocity Flow/Cap Link Discharge 15 minute summer 30 30 29 315.0 1.988 2.070 4.65559 15 minute summer 31 31 30 131.0 0.827 0.862 9.1102 15 minute summer 32 32 31 60.8 1.529 0.591 0.8047 15 minute summer 33 33 32 45.4 1.885 0.435 0.6749 15 minute summer 34 34 33 46.1 2.426 0.485	15 minute summer	46		1	18.197	0.000	0.0	0.0000	0.00	000	ОК	
15 minute summer 48 11 17.958 0.958 45.2 1.0832 0.000 SURCHARGED 15 minute summer J1 12 15.899 1.398 72.6 0.0000 0.0000 SURCHARGED 15 minute summer 5 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED Link Event (Upstream Depth) US Link Node DS Outflow (I/s) Velocity (m/s) Flow/Cap Link Vol (m³) Discharge Vol (m³) 2160 minute summer 30 29 315.0 1.988 2.070 4.6559 4.559 15 minute summer 31 31 30 131.0 0.827 0.862 9.1102 15 minute summer 32 32 31 60.8 1.529 0.591 0.8047 15 minute summer 34 33 32 45.4 1.885 0.435 0.6749 15 minute summer 35 35 34 6.0 0.529 0.489 0.2407 15 minute summer 36 36 31 50.6 0.719 0.787	15 minute summer	47		12	18.191	0.341	3.9	0.3858	0.00	000	SUR	CHARGED
15 minute summer J1 12 15.899 1.398 72.6 0.000 0.000 SURCHARGED 15 minute summer 5 12 15.996 0.395 25.0 0.0000 0.0000 SURCHARGED Link Event (Upstream Depth) US Link Node DS Outflow (I/s) Velocity (m/s) Flow/Cap Link Vol (m³) Discharge Vol (m³) 2160 minute summer 29 29 28 20.2 0.363 0.133 3.3043 15 minute summer 30 30 29 315.0 1.988 2.070 4.6559 15 minute summer 31 31 30 131.0 0.827 0.862 9.1102 15 minute summer 32 32 31 60.8 1.529 0.591 0.8047 15 minute summer 33 33 32 45.4 1.885 0.435 0.6749 15 minute summer 36 36 31 50.6 0.719 0.787 2.8271 15 minute summer 37 37 30 127.4 1.155 0.595 4.0044	15 minute summer	48		11	17.958	0.958	45.2	1.0832	0.00	000	SUR	CHARGED
Link Event (Upstream Depth) US Link Node DS Outflow (I/s) Velocity (m/s) Flow/Cap Link Vol (m³) Discharge Vol (m³) 2160 minute summer 29 29 28 20.2 0.363 0.133 3.3043 15 minute summer 30 30 29 315.0 1.988 2.070 4.6559 15 minute summer 31 31 30 131.0 0.827 0.862 9.1102 15 minute summer 32 32 31 60.8 1.529 0.591 0.8047 15 minute summer 32 32 31 60.8 1.529 0.485 0.6749 15 minute summer 34 34 33 46.1 2.426 0.485 1.2508 15 minute summer 36 36 31 50.6 0.719 0.787 2.8271 15 minute summer 37 37 30 127.4 1.155 0.595 4.0044 15 minute summer 38 35 62.2	15 minute summer	J1 5		12	15.899	1.398	72.6	0.0000	0.00	000	SUR	
Link EventOsLinkDsOutflowVelocityFlow/CapLinkDischarge(Upstream Depth)NodeNode(l/s)(m/s)Vol (m³)Vol (m³)Vol (m³)2160 minute summer29292820.20.3630.1333.304315 minute summer303029315.01.9882.0704.655915 minute summer313130131.00.8270.8629.110215 minute summer32323160.81.5290.5910.804715 minute summer33333245.41.8850.4350.674915 minute summer34343346.12.4260.4851.250815 minute summer36363150.60.7190.7872.827115 minute summer373730127.41.1550.5954.004415 minute summer3838J562.22.0470.6900.907515 minute summer39393040.91.0700.4020.699115 minute summer40403918.61.2530.1860.70962160 minute summer4141ATT/HB Z17.90.3670.2040.140715 minute summer4343J490.22.2672.2320.844615 minute summer4343J490.22.2672.2320.844615 minute su		J	l inde	12	13.330	0.395	25.0	0.0000	0.00		-J.	Discharge
(Opstream Depth)NodeNode(I/S)(III/S)Vol (III)Vol (III)II <th>Link Event</th> <th>US</th> <th>LINK</th> <th></th> <th>DS</th> <th>Outtiow</th> <th>Velocit</th> <th>y Flow/</th> <th>Сар</th> <th>LII</th> <th>nk (3)</th> <th>Discharge</th>	Link Event	US	LINK		DS	Outtiow	Velocit	y Flow/	Сар	LII	nk (3)	Discharge
2160 minute summer29292820.20.3630.1333.304315 minute summer303029315.01.9882.0704.655915 minute summer313130131.00.8270.8629.110215 minute summer32323160.81.5290.5910.804715 minute summer33333245.41.8850.4350.674915 minute summer34343346.12.4260.4851.250815 minute summer36363150.60.7190.7872.827115 minute summer373730127.41.1550.5954.004415 minute summer3838J562.22.0470.6900.907515 minute summer39393040.91.0700.4020.699115 minute summer40403918.61.2530.1860.70962160 minute summer4141ATT/HB Z17.90.3670.2040.140715 minute summer4343J490.22.2672.2320.844615 minute summer4343J490.22.2672.2320.844615 minute summer4435a356.00.7400.4000.1134	(Upstream Depth)	Node	20	ן 20	voae	(I/S)	(m/s)		177		(m ⁻)	voi (m²)
15 minute summer 30 30 29 315.0 1.988 2.070 4.6559 15 minute summer 31 31 30 131.0 0.827 0.862 9.1102 15 minute summer 32 32 31 60.8 1.529 0.591 0.8047 15 minute summer 33 33 32 45.4 1.885 0.435 0.6749 15 minute summer 34 33 46.1 2.426 0.485 1.2508 15 minute summer 36 36 31 50.6 0.719 0.787 2.8271 15 minute summer 37 37 30 127.4 1.155 0.595 4.0044 15 minute summer 38 38 J5 62.2 2.047 0.690 0.9075 15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 4TT/HB Z1 7.9 0.389 0.137 1.2944 <td>2160 minute summer</td> <td>29</td> <td>29</td> <td>28</td> <td></td> <td>20.2</td> <td>1.00</td> <td>3 U. D D</td> <td>133</td> <td>3.3</td> <td>5043</td> <td></td>	2160 minute summer	29	29	28		20.2	1.00	3 U. D D	133	3.3	5043	
15 minute summer 31 31 30 131.0 0.827 0.862 9.1102 15 minute summer 32 32 31 60.8 1.529 0.591 0.8047 15 minute summer 33 33 32 45.4 1.885 0.435 0.6749 15 minute summer 34 34 33 46.1 2.426 0.485 1.2508 15 minute summer 36 36 31 50.6 0.719 0.787 2.8271 15 minute summer 37 37 30 127.4 1.155 0.595 4.0044 15 minute summer 38 38 J5 62.2 2.047 0.690 0.9075 15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 43 43 J4 90.2 2.267 2.23	15 minute summer	30	30	29		315.0	1.98	82. 70	0/0	4.6	102	
15 minute summer 32 32 31 60.8 1.529 0.591 0.8047 15 minute summer 33 33 32 45.4 1.885 0.435 0.6749 15 minute summer 34 34 33 46.1 2.426 0.485 1.2508 15 minute summer 35 35 34 6.0 0.529 0.489 0.2407 15 minute summer 36 36 31 50.6 0.719 0.787 2.8271 15 minute summer 37 37 30 127.4 1.155 0.595 4.0044 15 minute summer 38 38 J5 62.2 2.047 0.690 0.9075 15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 43 43 J4 90.2 2.267 2.232<	15 minute summer	31	31	30		131.0	0.82	/ U.	862	9.1	102	
15 minute summer 33 33 32 43.4 1.885 0.435 0.6749 15 minute summer 34 34 33 46.1 2.426 0.485 1.2508 15 minute summer 35 35 34 6.0 0.529 0.489 0.2407 15 minute summer 36 36 31 50.6 0.719 0.787 2.8271 15 minute summer 37 37 30 127.4 1.155 0.595 4.0044 15 minute summer 38 38 J5 62.2 2.047 0.690 0.9075 15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 43 43 J4 90.2 2.267 2.232 0.8	15 minute summer	32	32	31		60.8 45 4	1.52	90. 50	42E	0.8	5047	
15 minute summer 34 34 33 46.1 2.426 0.485 1.2508 15 minute summer 35 35 34 6.0 0.529 0.489 0.2407 15 minute summer 36 36 31 50.6 0.719 0.787 2.8271 15 minute summer 37 37 30 127.4 1.155 0.595 4.0044 15 minute summer 38 38 J5 62.2 2.047 0.690 0.9075 15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 42 42 41 7.9 0.367 0.204 0.1407 15 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.11	15 minute summer	22 24	22 24	5Z		45.4	1.00	5 U. C O	455 405	1.0	0749	
15 minute summer 35 35 34 6.0 0.529 0.489 0.2407 15 minute summer 36 36 31 50.6 0.719 0.787 2.8271 15 minute summer 37 37 30 127.4 1.155 0.595 4.0044 15 minute summer 38 38 J5 62.2 2.047 0.690 0.9075 15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 42 42 41 7.9 0.367 0.204 0.1407 15 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134 15 minute summer 44 35a 35 6.0 0.740	15 minute summer	34 25	34 25	33 24		40.1	2.42	o 0. 0 0	485	1.2	2008	
15 minute summer 36 36 31 50.6 0.719 0.787 2.8271 15 minute summer 37 37 30 127.4 1.155 0.595 4.0044 15 minute summer 38 38 J5 62.2 2.047 0.690 0.9075 15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 42 42 41 7.9 0.367 0.204 0.1407 15 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134 15 minute summer 1 42 42 41.571 0.554 0.4269	15 minute summer	35	35	54 21		0.0 FO.C	0.52	90. 00	409 707	0.2	2407	
15 minute summer 37 37 30 127.4 1.155 0.595 4.0044 15 minute summer 38 38 J5 62.2 2.047 0.690 0.9075 15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 42 42 41 7.9 0.367 0.204 0.1407 15 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134	15 minute summer	30 27	30 27	20		0.0C 1 77 4	1 1	90. F0		2.0	044	
15 minute summer 38 38 15 62.2 2.047 0.690 0.9075 15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 42 42 41 7.9 0.367 0.204 0.1407 15 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134	15 minute summer	37 20	37 20	30		127.4 62.2	2.12	5 U. 7 O	595 600	4.0	044 075	
15 minute summer 39 39 30 40.9 1.070 0.402 0.6991 15 minute summer 40 39 18.6 1.253 0.186 0.7096 2160 minute summer 41 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 42 42 41 7.9 0.367 0.204 0.1407 15 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134	15 minute summer	20	30 20	20 12		40.0	2.04	/ U. 0 0	402	0.9	0015	
13 minute summer 40 40 59 18.6 1.255 0.186 0.7096 2160 minute summer 41 ATT/HB Z1 7.9 0.389 0.137 1.2944 2160 minute summer 42 42 41 7.9 0.367 0.204 0.1407 15 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134	15 minute summer	39	39	30		40.9 10 C	1.07	0 0. 2 0	40Z 10C	0.0	2006 2991	
2160 minute summer 41 41 A17/HB 21 7.9 0.389 0.137 1.2944 2160 minute summer 42 42 41 7.9 0.367 0.204 0.1407 15 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134	15 minute summer	40	40	39	ד/ווח דו	18.0	1.25	3 U. 0 0	100	1.7	090	
15 minute summer 43 43 J4 90.2 2.267 2.232 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134 15 minute summer 1 42 42 41 7.9 0.367 0.204 0.1407	2100 minute summer	41 42	4⊥ ⊿⊃	AI 1	і/ПВ ДІ	7.9	0.38	90. 70.	701 721	1.2	.944 407	
15 minute summer 45 45 14 90.2 2.267 2.252 0.8446 15 minute summer 44 35a 35 6.0 0.740 0.400 0.1134 15 minute summer 1 1 42 63.5 1.571 0.554 0.4959	15 minute summer	42 12	42 12	41 14		7.9 00 0	0.50	, U. ר ד	∠04 ววว	0.1	1407 2442	
L5 IIIIIIule Sulliller 44 50d 50 0.0 0./40 0.1134 15 minute summer 1 1 42 63 5 1.571 0.554 0.4969	15 minute summer	45	45 25 -	ј4 2 г		90.2	2.20	, Z.	232 400	0.8	124	
	15 minute summer	++ 1	55a 1	73 22		0.0 62 5	0.74	υ υ. 1 Λ	400 55/	0.1	134	

1.614

0.000

0.398

2.327

1.122

1.672

28.4

0.0

6.4

41.0

60.1

24.3

0.2208

0.0000

0.1024

0.1164

2.1693

0.1306

1.129

0.000

0.277

0.931

0.762

15 minute summer J5

15 minute summer J8

15 minute summer J9

15 minute summer 17

15 minute summer 19

15 minute summer Depth/Area 1 Depth/Area 1 J5

J5

J8

J9

17a

19a

File: Temple Hill v1.7 (20%cc).p Network: S Model: Leonardo Rigui 15/11/2021

Page 17

0.699

0.876

1.223

1.253

0.000

0.000

0.0658

0.6573

1.0532

0.1973

0.0000

0.0000

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.63%

Node Event		US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute summ	er	7	12	15.869	0.369	20.1	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	J2	12	15.815	1.470	72.1	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	J3	12	15.677	1.501	93.1	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	8	10	16.620	0.120	31.0	0.0000	0.0000	ОК	
15 minute summ	er	26	12	17.653	0.153	29.1	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	49	11	19.596	1.121	36.0	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	J4	11	19.238	1.288	122.8	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	Depth/Area 1	12	17.956	0.756	24.0	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	J5	12	17.890	0.796	83.2	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	18	11	13.840	0.357	200.7	0.0000	0.0000	OK	
15 minute summ	er	19	11	13.753	0.336	199.4	0.0000	0.0000	ОК	
15 minute summ	er	17	1	16.480	0.000	0.0	0.0000	0.0000	ОК	
15 minute summ	er	19	1	15.686	0.000	0.0	0.0000	0.0000	ОК	
Link Event		US	Link	DS	Outflo	w Velo	ocity Flov	v/Cap	Link	Discharge
(Upstream Depth)		Node		Node	(I/s)	(m	i/s)		Vol (m³)	Vol (m³)
15 minute summer	7	7a		J2	20.	0 1	.998	0.561	0.1146	
15 minute summer	J2	J2		J3	78.	.8 1	.120	1.000	2.3497	
15 minute summer	J3	J3		13	95.	6 1	.358	1.210	1.3274	
15 minute summer	8	8		J3	30.	8 2	.154	0.863	0.0846	
15 minute summer	26	26a	a	39	27.	8 2	.228	0.586	0.1630	
15 minute summer	49	49		J4	32.	6 1	.851	0.740	0.1524	
15 minute summer	J4	J4		42	121.	2 3	.048	2.979	0.7731	

37

J9

9

J8

J9

21.0

79.0

199.4

208.7

0.0

0.0

1.193

2.070

1.877

2.563

0.000

Flow+ \	/10.0 Copyright ©	1988-2021	Causeway	Software Solutior	ns Limited

1200

1200

1200

2200

1350

1200

1200

1200

1200

1200

1200

1200

724843.614

724795.107

724776.861

724886.980

724838.134

724808.396

724811.544

724789.555

724746.766

724744.645

724777.352

724763.809

728860.738

728820.004

728830.566

728929.655

728948.472

728974.235

728901.679

728883.155

728907.417

728904.587

728880.072

728825.907

2.300

1.200

1.100

1.050

1.994

1.418

2.650

2.100

3.541

3.530

1.920

1.000

20.300

21.300

21.300

17.500

18.594

19.170

19.500

20.000

19.591

19.600

20.000

21.300

5.00

5.00

5.00

5.00

5.00

5.00

5.00

33

34

35

36

37

38

39

40

41

42

43

44

0.077

0.109

0.027

0.126

0.035

0.059

CAUSEWAY

File: Temple Hill v1.7 50%blockPage 2Network: SModel: Leonardo Rigui15/11/2021

<u>Nodes</u>

Area (ha)	T of E (mins)	Cover Level	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
0 1 2 8	5 00	20 227	1200	724780 075	778868 1/0	1 6 9 7
0.120	5.00	10 688	1200	724700.075	728800.140	1.688
0.055	5.00	10 172	1200	724720.332	720000.701	0.075
	5.00	19.172	1200	724790.704	720333.231	1 215
	5.00	10 441	1200	724003.423	720971.213	1 4 4 1
0.085	5.00	18.441	1200	724844.082	/2894/.551	1.441
		16.190		724625.914	728915.064	1.689
0.047	5.00	16.504		724626.479	728907.666	0.904
0.038	5.00	17.307		724656.857	728913.697	1.807
		16.963		724656.292	728920.180	2.618
		17.831		724689,196	728925.721	3.655
0.058	5.00	18.082		724688.070	728919.915	1.582
0.055	5.00	19 662		724815 421	728893 269	2 162
0.068	5.00	19,904		724757.912	728884.506	1.429
0.000	0.00	19 796		724760 359	728892 809	1 846
0.045	5.00	18.439		724828,177	728962.261	1.239
01010	0.00	18 836		724825 751	728959 419	1 742
		17.808		724776.184	728970.531	4.325
		17.445		724782.249	728978.375	4.028
	5 00	17 956		724781 465	728966 554	1 476
	5.00	17 161		724772 732	728985 689	1 475
	Area (ha) 0.128 0.055 0.085 0.047 0.038 0.058 0.055 0.068 0.045	Area (ha) T of E (mins) 0.128 0.055 5.00 5.00 5.00 0.085 5.00 0.047 5.00 0.038 5.00 0.055 5.00 0.047 5.00 0.058 5.00 0.058 5.00 0.055 5.00 0.045 5.00 0.045 5.00	Area (ha) T of E (mins) Cover Level (m) 0.128 5.00 20.337 0.055 5.00 19.688 5.00 19.172 5.00 19.165 0.085 5.00 0.085 5.00 0.085 5.00 0.085 5.00 0.085 5.00 0.047 5.00 0.038 5.00 0.038 5.00 16.190 0.038 5.00 16.963 17.831 0.058 5.00 18.082 0.055 5.00 19.904 19.796 0.045 5.00 18.836 17.808 17.445 5.00 17.956	Area (ha) T of E (mins) Cover Level (m) Diameter (mm) 0.128 5.00 20.337 1200 0.055 5.00 19.688 1200 5.00 19.172 1200 5.00 19.165 1200 5.00 19.165 1200 0.085 5.00 18.441 1200 0.085 5.00 16.190 16.190 0.047 5.00 16.504 14.11 0.038 5.00 17.307 16.963 17.831 17.831 17.831 0.058 5.00 19.044 19.796 0.045 5.00 19.904 19.796 0.045 5.00 18.439 18.836 17.808 17.445 5.00 17.956 5.00 17.956 5.00 17.956	Area (ha)T of E (mins)Cover Level (m)Diameter (mm)Easting (m)0.1285.0020.3371200724780.0750.0555.0019.6881200724728.9325.0019.1721200724798.7645.0019.1651200724803.4230.0855.0018.4411200724824.6820.0855.0018.4411200724625.9140.0475.0016.504724626.4790.0385.0017.307724656.29217.831724656.29217.831724689.1960.0585.0018.082724688.0700.0555.0019.662724757.9120.0455.0018.439724760.3590.0455.0018.439724825.75117.808724761.84724761.8417.445724782.2495.0017.956724781.4655.0017.956724781.465	Area (ha) T of E (mins) Cover Level (m) Diameter (mm) Easting (m) Northing (m) 0.128 5.00 20.337 1200 724780.075 728868.140 0.055 5.00 19.688 1200 724728.932 728900.701 5.00 19.172 1200 724798.764 728939.291 5.00 19.165 1200 724803.423 728971.213 0.085 5.00 18.441 1200 724625.914 728915.064 0.047 5.00 16.504 724626.479 728907.666 0.038 5.00 17.307 724656.857 728913.697 16.963 724656.829 728920.180 724656.292 728920.180 0.058 5.00 18.082 724688.070 728915.064 0.055 5.00 19.662 724757.912 72883.269 0.045 5.00 18.439 724760.359 72892.809 0.045 5.00 18.439 724760.359 728959.419 17.808 <t< td=""></t<>

<u>Links</u>

Name	US Node	DS Node	Length	ks (mm) /	US IL	DS IL	Fall (m)	Slope	Dia (mm)	T of C	Rain (mm/br)
	Noue	Noue	(11)		(11)	(111)	(111)	(1.7)	(11111)	(111115)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3	3	2	6.266	0.600	10.675	10.600	0.075	83.5	225	10.06	32.5
4	4	3	6.212	0.600	10.820	10.675	0.145	42.8	225	9.99	32.6
6	6	4	68.533	0.600	11.250	10.820	0.430	159.4	225	9.94	32.7
7	ATT/HB Z2	6	32.691	0.600	11.440	11.250	0.190	172.1	225	8.83	34.5
15	15	ATT/HB Z2	3.066	0.600	13.663	13.652	0.011	278.8	300	5.59	41.9
9	9	ATT/HB Z2	35.784	0.600	13.400	11.460	1.940	18.4	375	8.29	35.5
19	J9	9	2.446	0.600	13.417	13.400	0.017	143.9	375	8.14	35.8
18	J8	19	9.915	0.600	13.483	13.417	0.066	150.2	375	8.12	35.9
19a	19	19	12.003	0.600	15.686	15.446	0.240	50.0	150	5.14	43.3
17a	17	18	6.611	0.600	16.480	16.348	0.132	50.1	150	5.08	43.5

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow
				(m)	(m)		(I/s)
3	1.431	56.9	86.0	1.350	1.425	0.733	0.0
4	2.004	79.7	86.3	1.155	1.350	0.733	0.0
6	1.033	41.1	86.5	1.879	1.155	0.733	0.0
7	0.994	39.5	91.4	4.516	1.879	0.733	0.0
15	0.937	66.2	29.2	2.315	2.229	0.193	0.0
9	4.235	467.8	69.4	3.625	4.346	0.541	0.0
J9	1.508	166.6	64.3	3.653	3.625	0.497	0.0
J8	1.476	163.0	64.4	3.950	3.653	0.497	0.0
19a	1.426	25.2	0.0	1.325	1.849	0.000	0.0
17a	1.425	25.2	0.0	1.326	1.310	0.000	0.0

Report by: File: Temple Hill v1.7 50%block Page 3 JJ Campbell Network: S Model: Leonardo Rigui 15/11/2021 15/11/2021	Page 3		
Links			
Name US DS Length ks (mm) / US IL DS IL Fall Slope Dia T of (Node Node (m) n (m) (m) (1:X) (mm) (ming	C Rain s) (mm/hr)		
10 10 J8 19.108 0.600 13.610 13.483 0.127 150.5 375 8.0	1 36.1		
11 11 10 19.524 0.600 13.760 13.610 0.150 130.2 300 7.7	9 36.5		
12 12 11 35.394 0.600 13.920 13.760 0.160 221.2 300 7.5	5 37.0		
45 45 12 12.673 0.600 18.000 17.747 0.253 50.1 150 5.1	.5 43.3		
13 13 12 37.385 0.600 14.080 13.920 0.160 233.7 300 6.9	9 38.3		
J3 J3 13 18.850 0.600 14.176 14.080 0.096 196.4 300 6.3	8 39.7		
J2 J2 J3 33.367 0.600 14.345 14.176 0.169 197.4 300 6.1	.0 40.5		
8 8 J3 5.914 0.600 16.500 16.263 0.237 25.0 150 5.0	5 43.6		
J1 J1 J2 30.806 0.600 14.501 14.345 0.156 197.5 300 5.6	0 41.9		
7a 7 J2 6.508 0.600 15.500 15.240 0.260 25.0 150 5.0	5 43.6		
5 5 J1 7.420 0.600 15.600 14.501 1.099 6.8 150 5.0	43.6		
14 14 J1 9.646 0.600 14.550 14.501 0.049 196.9 300 5.1	4 43.3		
16 15 56.605 0.600 15.500 13.750 1.750 32.3 225 5.4	1 42.5		
17 J6 15 8.136 0.600 13.691 13.663 0.028 290.6 300 5.5	3 42.1		
19 J7 J6 17.225 0.600 13.750 13.691 0.059 292.0 300 5.3	8 42.5		
18 18 J6 15.425 0.600 15.000 13.750 1.250 12.3 100 5.1	.2 43.4		
20 20 J7 17.404 0.600 15.525 13.750 1.775 9.8 225 5.0	7 43.5		
22 22 21 9.852 0.600 13.500 12.770 0.730 13.5 225 10.7	9 31.4		
23 23 22 26.537 0.600 13.700 13.500 0.200 132.7 225 10.7	4 31.4		
24242375.4030.60015.90013.7002.20034.322510.3	5 32.0		
25 25 24 31.832 0.600 15.970 15.900 0.070 454.7 225 9.7	9 32.9		
26 ATT/HB Z1 25 5.284 0.600 16.000 15.970 0.030 176.1 225 8.9	2 34.4		
41 41 ATT/HB Z1 18.381 0.600 16.050 16.000 0.050 367.6 300 6.1	.8 40.3		
27 27 ATT/HB Z1 10.352 0.600 16.050 16.000 0.050 207.0 525 8.8	3 34.5		
Name Vel Cap Flow US DS ΣArea ΣAdd			
(m/s) (l/s) (l/s) Depth Depth (ha) Inflow			
(m) (m) (l/s)			
13 1.024 /2.4 39.9 3.720 5.330 0.288 0.0			
JS 1.115 78 20 20 20 20 20 0.20 U.U JO 1.115 78 20 20 20 20 20 0.20 0.00			

				(m)	(m)		(I/s)						
10	1.475	162.9	64.8	4.515	3.950	0.497	0.0						
11	1.376	97.3	47.4	4.440	4.590	0.360	0.0						
12	1.053	74.4	46.0	5.330	4.440	0.344	0.0						
45	1.425	25.2	8.6	1.538	1.653	0.055	0.0						
13	1.024	72.4	39.9	3.720	5.330	0.288	0.0						
J3	1.118	79.0	36.1	3.355	3.720	0.251	0.0						
J2	1.115	78.8	28.3	2.318	3.355	0.193	0.0						
8	2.024	35.8	9.2	1.432	1.418	0.058	0.0						
J1	1.115	78.8	23.5	1.389	2.318	0.155	0.0						
7a	2.021	35.7	6.0	1.657	1.573	0.038	0.0						
5	3.903	69.0	7.4	0.754	1.539	0.047	0.0						
14	1.117	78.9	16.9	1.150	1.389	0.108	0.0						
16	2.308	91.8	17.0	0.800	2.303	0.111	0.0						
17	0.917	64.8	12.4	2.660	2.315	0.082	0.0						
19	0.915	64.7	7.5	3.333	2.660	0.049	0.0						
18	2.211	17.4	5.2	1.400	2.801	0.033	0.0						
20	4.203	167.1	7.6	2.000	3.408	0.049	0.0						
22	3.580	142.4	107.5	0.675	1.105	0.948	0.0						
23	1.133	45.1	107.7	0.775	0.675	0.948	0.0						
24	2.242	89.1	109.7	3.075	0.775	0.948	0.0						
25	0.607	24.1	112.6	3.305	3.075	0.948	0.0						
26	0.982	39.0	117.6	3.291	3.305	0.948	0.0						
41	0.814	57.5	37.2	3.241	3.216	0.256	0.0						
27	1.553	336.1	86.3	3.030	2.991	0.692	0.0						
CAUSEV		Report b JJ Campb	y: ell			File: Terr Network Model: L 15/11/2	nple Hill v :: S .eonardo 021	1.7 50%l Rigui	olock	Page 4			
--------------	--------------	----------------------	---------------	---------------	------------	--	--	-------------------	----------------	-------------	------------------	-----------------	--
					<u>Lin</u>	<u>ks</u>							
Name	US Node	DS Node	Length (m)	ks (mm n	ı) /	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)	
28	28	27	16.647	0.6	500	16.072	16.050	0.022	756.7	525	8.72	34.7	
29	29	28	20.855	0.6	500	16.119	16.072	0.047	443.7	450	8.37	35.4	
46	46	29	4.926	0.6	000	18.197	17.767	0.430	11.5	150	5.03	43.6	
30	30	29	29.385	0.6	500	16.185	16.119	0.066	445.Z	450	8.01 5.21	30.1 42.8	
37	37	30	36.306	0.6	500	16.600	16.185	0.415	87.5	375	5.68	41.7	
31	31	30	57.498	0.6	500	16.314	16.185	0.129	445.7	450	7.50	37.1	
36	36	31	40.146	0.6	500	16.450	16.314	0.136	295.2	300	5.74	41.5	
32	32	31	20.233	0.6	500	17.100	16.314	0.786	25.7	225	6.50	39.5	
33	33	32	22.581	0.6	500	18.000	17.100	0.900	25.1	225	6.37	39.8	
34	34	33	63.342	0.6	500	20.100	18.000	2.100	30.2	225	6.22	40.2	
35	35	34	21.083	0.6	000	20.200	20.100	0.100	210.8	150	5.78	41.4	
358	44	35 27	13.859	0.6	500	20.300	20.200	0.100	138.b	150	5.27	42.9	
13	13 48	37	6 612	0.0	500	17.094	16.600	0.494	16 5	150	5.30	42.0	
Depth/Area 1	Depth/Area 1	J5	3.737	0.6	500	17.200	17.094	0.106	35.3	150	5.04	43.6	
38	38	J5	22.819	0.6	500	17.775	17.094	0.681	33.5	225	5.24	43.0	
47	47	38	5.819	0.6	500	17.850	17.752	0.098	59.4	150	5.07	43.5	
26a	26	39	9.261	0.6	500	17.500	16.850	0.650	14.2	150	5.06	43.5	
40	40	39	28.752	0.6	500	17.900	16.850	1.050	27.4	225	5.19	43.1	
42	42	41	3.537	0.6	500	16.070	16.050	0.020	176.8	225	5.80	41.3	
J4	J4	42	19.638	0.6	000	17.951	17.830	0.121	162.3	225	5.74	41.5 42 F	
49	49 43	J4 14	21 237	0.0	500	18.475	17.950	0.525	164.6	225	5.00	45.5 47.4	
	43	3-1	21.257	0.0	.00	10.000	17.551	0.125	104.0	225	5.42	-121	
	I	Name	Vel	Сар	Flow	us US	DS	Σ Area	α ΣΑ	dd			
			(m/s)	(I/s)	(I/s)	Depth (m)	Depth (m)	(ha)	Infl (1/	ow 's)			
	28		0.806	174.5	86.8	2.903	3.030	0.692	2	0.0			
	29		0.958	152.4	88.4	2.631	2.978	0.692	2	0.0			
	46		2.993	52.9	0.0	0.825	1.283	0.000)	0.0			
	30		0.957	152.2	90.2	1.965	2.631	0.692	2	0.0			
	39		2.555	101.6	13.9	2.425	2.190	0.090)	0.0			
	37		1.938	214.0	42.6	5 1.619	2.040	0.283	3	0.0			
	31		0.956	152.1 64.2	38.0	0 750	1.905	0.28:	5)	0.0			
	30		2 589	102.9	18.2	2415	2.380	0.103	7	0.0			
	33		2.622	104.3	12.7	2.075	2.415	0.088	3	0.0			
	34		2.391	95.1	12.8	0.975	2.075	0.088	3	0.0			
	35		0.688	12.2	1.7	0.950	1.050	0.011	L	0.0			
	35a		0.852	15.0	1.8	0.850	0.950	0.011	L	0.0			
	J5		2.269	90.2	26.4	1.517	1.769	0.171	L -	0.0			
	48	th / A	2.489	44.0	13.4	1.291	1.844	0.085	-	0.0			
	Dep	tn/Area 1	1.701	30.1	10 G	. 1.089 . 1.170	1.592	0.045	5	0.0			
	47		1 307	23.1	19.0) 1.170	1 268	0.120	, ,	0.0			
	26a		2.682	47.4	8.6	2.012	2.500	0.055	5	0.0			
	40		2.510	99.8	5.5	5 1.875	2.425	0.035	5	0.0			
	42		0.980	39.0	38.2	3.305	3.316	0.256	5	0.0			
	J4		1.023	40.7	38.3	1.620	1.545	0.256	5	0.0			
	49		2.493	44.0	10.7	1.279	1.696	0.068	3	0.0			
	43		1.016	40.4	28.8	1.695	1.620	0.188	3	0.0			

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

CAU	SEV		CO IN	eport by: Campbel			File: Te Netwo Model 15/11/	mple Hill rk: S : Leonardo 2021	v1.7 509 o Rigui	%block	Page	5
						Li	<u>nks</u>					
	Name 1	US Node 1	DS Node 43	Length (m) 12.239	ks (mm) / n 0.600	US IL (m) 18.650	DS IL (m) 18.08	. Fall (m) 0 0.570	Slope (1:X) 21.5	Dia (mn 22	a To n) (mi 25 5	of C Rain ins) (mm/hr) 07 43.5
			Nar	me Ve (m/	l Cap (s) (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Ado Inflov (I/s)	k V	
			T	2.0	50 112.8	Pipeline	Schedul	e	0.120	0.	0	
								-				
	Link	Length	Slope	Dia	Link	US CL	US IL	US Dep	oth D	S CL	DS IL	DS Depth
	2	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
	3	6.266	83.5	225	Circular	12.250	10.675	1.3	50 12	.250	10.600	1.425
	4	6.212	42.8	225	Circular	12.200	10.820	1.1	.55 12	.250	10.675	1.350
	6	68.533	159.4 172.1	225	Circular	16 191	11.250	1.8	10 12	.200	11.820	1.155
	15	32.091	. 1/2.1 : 770 0	225	Circular	16.181	12 662	4.5	10 13	.354 101	12 652	1.879
	13	35 78/	270.0 18/1	375	Circular	17 /00	13.005	2.5	25 16	.101 181	11 / 60	2.229 A 346
	19	2 446	, 10.4 1/2 0	375	Circular	17.400	13.400	3.6	53 17	400	13 400	3 625
	18	9 915	5 150 2	375	Circular	17 808	13 483	3.0	50 17	445	13 417	3 653
	19a	12.003	50.0	150	Circular	17.161	15.686	1.3	25 17	.445	15.446	1.849
	17a	6.611	. 50.1	150	Circular	17.956	16.480	1.3	26 17	.808	16.348	1.310
	10	19.108	150.5	375	Circular	18.500	13.610	4.5	15 17	.808	13.483	3.950
	11	19.524	130.2	300	Circular	18.500	13.760	4.4	40 18	.500	13.610	4.590
	12	35.394	221.2	300	Circular	19.550	13.920	5.3	30 18	.500	13.760	4.440
	45	12.673	50.1	150	Circular	19.688	18.000	1.5	38 19	.550	17.747	1.653
	13	37.385	233.7	300	Circular	18.100	14.080	3.7	20 19	.550	13.920	5.330
	J3	18.850	196.4	300	Circular	17.831	14.176	3.3	55 18	.100	14.080	3.720
	J2	33.367	' 197.4	300	Circular	16.963	14.345	2.3	18 17	.831	14.176	3.355
	8	5.914	25.0	150	Circular	18.082	16.500	1.4	32 17	.831	16.263	1.418
	J1	30.806	5 197.5	300	Circular	16.190	14.501	1.3	89 16	.963	14.345	2.318

LINK	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
3	3	1200	Manhole	Adoptable	2	1200	Manhole	Adoptable
4	4	1200	Manhole	Adoptable	3	1200	Manhole	Adoptable
6	6	1200	Manhole	Adoptable	4	1200	Manhole	Adoptable
7	ATT/HB Z2	1350	Manhole	Adoptable	6	1200	Manhole	Adoptable
15	15	1200	Manhole	Adoptable	ATT/HB Z2	1350	Manhole	Adoptable
9	9	1350	Manhole	Adoptable	ATT/HB Z2	1350	Manhole	Adoptable
J9	19		Junction		9	1350	Manhole	Adoptable
J8	J8		Junction		19		Junction	
19a	19		Manhole	Adoptable	19		Junction	
17a	17		Manhole	Adoptable	J8		Junction	
10	10	1350	Manhole	Adoptable	J8		Junction	
11	11	1200	Manhole	Adoptable	10	1350	Manhole	Adoptable
12	12	1200	Manhole	Adoptable	11	1200	Manhole	Adoptable
45	45	1200	Manhole	Adoptable	12	1200	Manhole	Adoptable
13	13	1200	Manhole	Adoptable	12	1200	Manhole	Adoptable
J3	13		Junction		13	1200	Manhole	Adoptable
J2	J2		Junction		13		Junction	
8	8		Manhole	Adoptable	J3		Junction	
J1	J1		Junction		J2		Junction	

CAUS	EV		B Rep JJ C	oort by: ampbell			File: Ten Networ Model: 15/11/2	nple Hill v1.7 <: S Leonardo Rig 021	50%block gui	Page (6
						<u>Pipeline</u>	<u>Schedule</u>				
	Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
	7a	6.508	25.0	150	Circular	17.307	15.500	1.657	16.963	15.240	1.573
	5	7.420	6.8	150	Circular	16.504	15.600	0.754	16.190	14.501	1.539
	14	9.646	196.9	300	Circular	16.000	14.550	1.150	16.190	14.501	1.389
	16	56.605	32.3	225	Circular	16.525	15.500	0.800	16.278	13.750	2.303
	17	8.136	290.6	300	Circular	16.651	13.691	2.660	16.278	13.663	2.315
	19	17.225	292.0	300	Circular	17.383	13.750	3.333	16.651	13.691	2.660
	18	15.425	12.3	100	Circular	16.500	15.000	1.400	16.651	13.750	2.801
	20	17.404	9.8	225	Circular	17.750	15.525	2.000	17.383	13.750	3.408
	22	9.852	13.5	225	Circular	14.400	13.500	0.675	14.100	12.770	1.105
	23	26.537	132.7	225	Circular	14.700	13.700	0.775	14.400	13.500	0.675
	24	75.403	34.3	225	Circular	19.200	15.900	3.075	14.700	13.700	0.775
	25	31.832	454.7	225	Circular	19.500	15.970	3.305	19.200	15.900	3.075
	26	5.284	176.1	225	Circular	19.516	16.000	3.291	19.500	15.970	3.305
	41	18.381	367.6	300	Circular	19.591	16.050	3.241	19.516	16.000	3.216
	27	10.352	207.0	525	Circular	19.605	16.050	3.030	19.516	16.000	2.991
	28	16.647	756.7	525	Circular	19.500	16.072	2.903	19.605	16.050	3.030
	29	20.855	443.7	450	Circular	19.200	16.119	2.631	19.500	16.072	2.978
	46	4.926	11.5	150	Circular	19.172	18.197	0.825	19.200	17.767	1.283
	30	29.385	445.2	450	Circular	18.600	16.185	1.965	19.200	16.119	2.631
	39	17.578	26.4	225	Circular	19.500	16.850	2.425	18.600	16.185	2.190
	37	36.306	87.5	375	Circular	18.594	16.600	1.619	18.600	16.185	2.040
	31	57.498	445.7	450	Circular	19.000	16.314	2.236	18.600	16.185	1.965
	36	40.146	295.2	300	Circular	17.500	16.450	0.750	19.000	16.314	2.386
	32	20.233	25.7	225	Circular	19.740	17.100	2.415	19.000	16.314	2.461
	33	22.581	25.1	225	Circular	20.300	18.000	2.075	19.740	17.100	2.415
	1	ink	115	Dia	Node	мн	г		Nor	10	МЦ

LINK	03	Dia	Noue		03	Dia	Noue	
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
7a	7		Manhole	Adoptable	J2		Junction	
5	5		Manhole	Adoptable	J1		Junction	
14	14	2200	Manhole	Adoptable	J1		Junction	
16	16	1200	Manhole	Adoptable	15	1200	Manhole	Adoptable
17	J6	1200	Junction		15	1200	Manhole	Adoptable
19	J7	1200	Junction		J6	1200	Junction	
18	18	1200	Manhole	Adoptable	J6	1200	Junction	
20	20	1200	Manhole	Adoptable	J7	1200	Junction	
22	22	1200	Manhole	Adoptable	21	1200	Manhole	Adoptable
23	23	1200	Manhole	Adoptable	22	1200	Manhole	Adoptable
24	24	1200	Manhole	Adoptable	23	1200	Manhole	Adoptable
25	25	1200	Manhole	Adoptable	24	1200	Manhole	Adoptable
26	ATT/HB Z1	1500	Manhole	Adoptable	25	1200	Manhole	Adoptable
41	41	1200	Manhole	Adoptable	ATT/HB Z1	1500	Manhole	Adoptable
27	27	1500	Manhole	Adoptable	ATT/HB Z1	1500	Manhole	Adoptable
28	28	1500	Manhole	Adoptable	27	1500	Manhole	Adoptable
29	29	1350	Manhole	Adoptable	28	1500	Manhole	Adoptable
46	46	1200	Manhole	Adoptable	29	1350	Manhole	Adoptable
30	30	1500	Manhole	Adoptable	29	1350	Manhole	Adoptable
39	39	1200	Manhole	Adoptable	30	1500	Manhole	Adoptable
37	37	1350	Manhole	Adoptable	30	1500	Manhole	Adoptable
31	31	1500	Manhole	Adoptable	30	1500	Manhole	Adoptable
36	36	2200	Manhole	Adoptable	31	1500	Manhole	Adoptable
32	32	1200	Manhole	Adoptable	31	1500	Manhole	Adoptable
33	33	1200	Manhole	Adoptable	32	1200	Manhole	Adoptable

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

CAUSEWAY 🚱	Report by: JJ Campbell			File: Templ Network: S Model: Leo	e Hill v: S onardo	1.7 50%bloc Rigui	k Pag	e 7	
			Dinalina	<u> 15/11/202</u>	1				
			Pipeiiiie	Schedule					
Link Lengtl	n Slope D	ia I	Link US	CL US IL	USI	Depth DS	CL	DS IL	DS Depth
(m)	(1:X) (m	іm) Т	Гуре (r	n) (m)	(m) (ı	n)	(m)	(m)
34 63.342	2 30.2 2	225 Ci	rcular 21.	300 20.100	כ	0.975 20.	300 1	.8.000	2.075
35 21.083	3 210.8 1	L50 Ci	rcular 21.	300 20.200	כ	0.950 21.	300 2	0.100	1.050
35a 13.859	9 138.6 1	L50 Ci	rcular 21.	300 20.300	כ	0.850 21.	300 2	0.200	0.950
J5 16.528	3 33.5 2	225 Ci	rcular 18.	836 17.094	1	1.517 18.	594 1	.6.600	1.769
48 6.612	2 16.5 1	L50 Ci	rcular 18.	441 17.000)	1.291 18.	594 1	.6.600	1.844
Depth/Area 1 3.73	7 35.3 1	L50 Ci	rcular 18.	439 17.200)	1.089 18.	836 1	.7.094	1.592
38 22.819	9 33.5 2	225 Ci	rcular 19.	170 17.775	5	1.170 18.	836 1	.7.094	1.517
47 5.819	9 59.4 1	L50 Ci	rcular 19.	165 17.850	כ	1.165 19.	170 1	7.752	1.268
26a 9.263	1 14.2 1	L50 Ci	rcular 19.	662 17.500)	2.012 19.	500 1	.6.850	2.500
40 28.752	2 27.4 2	225 Ci	rcular 20.	000 17.900)	1.875 19.	500 1	.6.850	2.425
42 3.53	7 176.8 2	225 Ci	rcular 19.	600 16.070)	3.305 19.	591 1	6.050	3.316
J4 19.638	3 162.3 2	225 Ci	rcular 19.	796 17.952	1	1.620 19.	600 1	7.830	1.545
49 8.656	5 16.5 1	L50 Cir	rcular 19.	904 18.475	5	1.279 19.	796 1	7.950	1.696
43 21.23	7 164.6	25 Ci	rcular 20.	000 18.080)	1.695 19.	796 1	7.951	1.620
1 12.239	9 21.5 2	225 Ci	rcular 20.	337 18.650)	1.462 20.	000 1	8.080	1.695
Link	US	Dia	Node	МН	DS	Dia	Node	N	ІН
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Ту	ре
34 34	4	1200	Manhole	Adoptable	33	1200 N	/lanhole	e Adop	table
35 35	5	1200	Manhole	Adoptable	34	1200 N	/lanhole	e Adop	table
35a 44	4	1200	Manhole	Adoptable	35	1200 N	/lanhole	e Adop	table
J5 J5	5		Junction		37	1350 N	/lanhole	e Adop	table
48 48	3	1200	Manhole	Adoptable	37	1350 N	/lanhole	e Adop	table
Depth/Area 1 D	epth/Area 1		Manhole	Adoptable	J5	J	unction		
38 38	3	1200	Manhole	Adoptable	J5	J	unction		
47 47	7	1200	Manhole	Adoptable	38	1200 N	/lanhole	e Adop	table
26a 20	5		Manhole	Adoptable	39	1200 N	/lanhole	e Adop	table
40 40	C	1200	Manhole	Adoptable	39	1200 N	/lanhole	e Adop	table
42 42	2	1200	Manhole	Adoptable	41	1200 N	/lanhole	e Ador	table
14 .14	L		lunction		42	1200 N	/anhole	Ador	table
49 49	J		Manhole	Adoptable		1	unction		
43 43	3	1200	Manhole	Adoptable	14	-	unction		
1 1	-	1200	Manhole	Adoptable	43	1200 N	/anhole	Ador	table
			<u>Simulatio</u>	on Settings					
Rainfall	Methodology	FSR			S	kip Steady S	tate x	<	
	FSR Region	Scotla	and and Irel	and D	rain Do	wn Time (n	nins) 2	240	
	M5-60 (mm)	17.00	0	Ado	ditional	Storage (m ³	/ha) (0.0	
	Ratio-R	0.300)	(Check D	ischarge Ra	e(s) x	<	
	Summer CV	1.000		C	heck Di	scharge Vol	ume x	(
A	Analysis Speed	Norm	al						
				I					
			Storm D	ourations					
15 30 60	120 180	24	0 360	480	600	720	960	1440	2160
R	eturn Period	Climat	e Change	Additional	Area	Additional I	low		
	(years)	(0	C %)	(A %)		(Q %)			
	1		0		0		0		
	30		20		0		0		
							~		
	100		20		0		0		
	100		20		0		0		

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

	Report by:	File: Temple Hil	l v1.7 50%block Page 8
	JJ Campbell	Network: S	
JAUSEVVAI 😈		Model: Leonarc	do Rigui
		15/11/2021	
		· ·	·
	<u>Node ATT/</u>	<u>'HB Z1 Online Hydro-Brake® C</u>	Control
F	lap Valve x	Objective	(HE) Minimise upstream storage
Replaces Downsti	ream Link 🗸	Sump Available	\checkmark
Invert	Level (m) 16.000	Product Number	CTL-SHE-0062-2000-1400-2000
Design [Depth (m) 1.400	Min Outlet Diameter (m)	0.075
Design	Flow (l/s) 2.0	Min Node Diameter (mm)	1200
	Node ATT/	/HB Z2 Online Hvdro-Brake® (Control
F	lap Valve x	Objective	(HE) Minimise upstream storage
Replaces Downsti	ream Link √	Sump Available	√
Invert	Level (m) 11.440	Product Number	CTL-SHE-0056-2000-2110-2000
Design [Depth (m) 2.110	Min Outlet Diameter (m)	0.075
Design	Flow (l/s) 2.0	Min Node Diameter (mm)	1200
	<u>Node ATT/</u>	HB Z1 Depth/Area Storage St	<u>ructure</u>
Base Inf Coefficier	nt (m/hr) 0 00000	Safety Factor 2.0	Invert Level (m) 16,000
Side Inf Coefficier	it (m/hr) 0.00000	Porosity 1.00	Time to half empty (mins)
		, ,	
Depth	Area Inf Area	Depth Area Inf Area	Depth Area Inf Area
(m)	(m²) (m²)	(m) (m²) (m²)	(m) (m²) (m²)
0.000	525.0 0.0	1.400 525.0 0.0	1.401 0.0 0.0
	<u>Node ATT/</u>	HB Z2 Depth/Area Storage St	ructure
Base Inf Coefficier	וt (m/hr) 0.00000	Safety Factor 2.0	Invert Level (m) 11.440
Side Inf Coefficier	ıt (m/hr) 0.00000	Porosity 1.00	Time to half empty (mins)
		Douth Area Inf Area	Denth Area Inf Area
Depth	Area Inf Area	Depth Area ini Area	Deptil Alea III Alea
Depth (m)	Area Inf Area (m ²) (m ²)	(m) (m^2) (m^2)	(m) (m^2) (m^2)

. . .

File: Temple Hill v1.7 50%blockPage 9Network: SModel: Leonardo Rigui

Results for 1 year Critical Storm Duration. Lowest mass balance: 99.53%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)	
120 minute summer	2	92	10.623	0.023	1.3	0.0000	0.0000	ОК
120 minute summer	3	92	10.699	0.024	1.3	0.0273	0.0000	ОК
120 minute summer	4	92	10.840	0.020	1.3	0.0226	0.0000	ОК
180 minute summer	6	116	11.279	0.029	1.3	0.0327	0.0000	ОК
2160 minute summer	ATT/HB Z2	1860	11.953	0.513	8.4	188.4839	0.0000	SURCHARGED
15 minute summer	9	12	13.505	0.105	75.4	0.1501	0.0000	ОК
15 minute summer	10	12	13.786	0.176	69.5	0.2522	0.0000	ОК
15 minute summer	11	12	13.932	0.172	52.1	0.1944	0.0000	ОК
15 minute summer	12	12	14.107	0.187	50.8	0.2120	0.0000	ОК
15 minute summer	13	11	14.253	0.173	43.0	0.1952	0.0000	ОК
15 minute summer	14	10	14.650	0.100	16.6	0.3786	0.0000	ОК
15 minute summer	15	11	13.813	0.150	28.4	0.1697	0.0000	ОК
15 minute summer	16	10	15.566	0.066	17.0	0.0741	0.0000	ОК
15 minute summer	J6	11	13.816	0.125	12.3	0.0000	0.0000	ОК
15 minute summer	18	10	15.037	0.037	5.1	0.0420	0.0000	ОК
15 minute summer	J7	11	13.819	0.069	7.4	0.0000	0.0000	ОК
15 minute summer	20	10	15.557	0.032	7.4	0.0363	0.0000	ОК
180 minute summer	21	184	12.787	0.017	1.6	0.0000	0.0000	ОК
180 minute summer	22	188	13.517	0.017	1.6	0.0195	0.0000	ОК
180 minute summer	23	184	13.732	0.032	1.6	0.0358	0.0000	ОК
180 minute summer	24	180	15.921	0.021	1.6	0.0239	0.0000	ОК
480 minute summer	25	280	16.011	0.041	1.6	0.0466	0.0000	ОК
2160 minute summer	ATT/HB Z1	1740	16.438	0.438	10.3	230.4616	0.0000	SURCHARGED
2160 minute summer	27	1740	16.438	0.388	7.6	0.6848	0.0000	ОК
2160 minute summer	28	1740	16.438	0.366	7.7	0.6459	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(1/5)	(m/s)		voi (m²)	voi (m°)
120 minute summer	3	3	2	1.3	0.581	0.023	0.0139	24.0
120 minute summer	4	4	3	1.3	0.647	0.016	0.0124	
180 minute summer	6	6	4	1.3	0.558	0.031	0.1603	
2160 minute summer	ATT/HB Z2	Hydro-Brake [®]	6	1.3				
15 minute summer	9	9	ATT/HB Z2	75.6	3.089	0.162	0.8762	
15 minute summer	10	10	18	69.8	1.411	0.429	0.9458	
15 minute summer	11	11	10	52.7	1.266	0.541	0.8274	
15 minute summer	12	12	11	50.2	1.141	0.675	1.5580	
15 minute summer	13	13	12	42.7	0.969	0.590	1.6471	
15 minute summer	14	14	J1	16.4	0.742	0.207	0.2127	
15 minute summer	15	15	ATT/HB Z2	28.5	0.889	0.431	0.0985	
15 minute summer	16	16	15	16.6	1.750	0.181	0.5367	
15 minute summer	J6	17	15	12.0	0.391	0.184	0.2565	
15 minute summer	18	18	J6	5.1	1.737	0.292	0.0621	
15 minute summer	J7	19	J6	7.2	0.384	0.111	0.3456	
15 minute summer	20	20	J7	7.4	1.157	0.044	0.1197	
180 minute summer	22	22	21	1.6	1.187	0.011	0.0135	33.4
180 minute summer	23	23	22	1.6	0.701	0.036	0.0634	
180 minute summer	24	24	23	1.6	0.625	0.018	0.1983	
480 minute summer	25	25	24	1.6	0.490	0.067	0.1087	
2160 minute summer	ATT/HB Z1	Hydro-Brake®	25	1.6				
2160 minute summer	27	27	ATT/HB Z1	7.4	0.531	0.022	1.8799	
2160 minute summer	28	28	27	7.6	0.323	0.043	2.7583	

Results for 1	<u>year Critica</u>	Storm Duration.	Lowest mass k	<u> </u>

Node Event	US Noda	Pe (mi	ak	Level	Depth	Inflow	Node	Flood		Status
2160 minute summer	20	1 ⁻	740	16 / 27	(III) 0.218	(1/5)	0 4558		OK	
15 minute summer	20	1.	11	16 / 72	0.318	96.7	0.4000	0.0000		
15 minute summer	30		12	16/196	0.288	30.7 12 0	0.3032	0.0000		
15 minute summer	32		11	17 165	0.102	12.0	0.3220	0.0000		
15 minute summer	32		11	18 054	0.0054	13.2	0.0737	0.0000	OK	
15 minute summer	3/		10	20 158	0.054	13.2	0.0010	0.0000		
15 minute summer	25		11	20.130	0.038	1 0	0.0034	0.0000		
15 minute summer	36		11	16 551	0.050	16.7	0.0431	0.0000		
15 minute summer	37		10	16 712	0.101	12.7	0.3047	0.0000		
15 minute summer	38		10	17 845	0.112	19.3	0.1054	0.0000	OK	
15 minute summer	30		10	16 905	0.055	13.5	0.1034	0.0000	OK	
15 minute summer	40		10	17 935	0.035	54	0.0020	0.0000	OK	
15 minute summer	40 41		10	16 724	0.674	46.0	0.0555	0.0000	SLIR	CHARGED
15 minute summer	42		10	16 778	0.074	40.0 38 4	0.7027	0.0000	SUR	
15 minute summer	42		10	18 224	0.700	28.4 28.6	0.0004	0.0000	OK	CHANGED
15 minute summer	43		10	20 335	0.035	1.8	0.1027	0.0000	OK	
15 minute summer	1		10	18 713	0.055	19.6	0.0400	0.0000	OK	
15 minute summer	45		10	18 062	0.062	8.4	0.0707	0.0000	OK	
15 minute summer	46		1	18 197	0.002	0.4	0.0000	0.0000	OK	
15 minute summer	40		1	17 850	0.000	0.0	0.0000	0.0000	OK	
15 minute summer	48		10	17.056	0.000	13.0	0.0632	0.0000	OK	
15 minute summer	10		10	14 612	0.111	22.5	0.0002	0.0000	OK	
15 minute summer	11		10	14.012	0.111	23.5	0.0000	0.0000	UK	
15 minute summer	5		10	15.633	0.033	7.2	0.0000	0.0000	ОК	
Link Event	US	Link		DS	Outflow	Velocity	Flow/	Сар	Link	Discharge
(Upstream Depth)	Node		ſ	Vode	(I/s)	(m/s)		Vo	ol (m³)	Vol (m³)
2160 minute summer	29	29	28		7.7	0.378	B 0.0	051 2	.6890	
15 minute summer	30	30	29		93.4	0.881	. 0.	514 3	.2241	
15 minute summer	31	31	30		38.4	0.519	0.2	253 4	.7897	
15 minute summer	32	32	31		19.0	1.008	3 0.:	184 C	.4387	
15 minute summer	33	33	32		13.2	1.576	6 0.1	127 0	.1897	
15 minute summer	34	34	33		13.2	1.739	0.1	138 0	.4827	
15 minute summer	35	35	34		1.7	0.367	0.:	143 C	.1023	
15 minute summer	36	36	31		16.2	0.598	3 0.2	251 1	2849	
15 minute summer	37	37	30		42.4	0.872	2 0.1	198 2	.1460	
15 minute summer	38	38	J5		19.2	1.626	5 O.:	213 0	.2696	
15 minute summer	39	39	30		13.6	0.792	0.:	133 0	.4160	
15 minute summer	40	40	39		5.3	0.939	0.0	054 C).1657	
15 minute summer	41	41	ATT	Г/НВ Z1	62.0	1.701	. 1.0	D78 C	.6743	
15 minute summer	42	42	41		46.0	1.156	5 1.:	180 C	.1407	
15 minute summer	43	43	J4		28.3	0.935	0 .	700 C	.6398	
15 minute summer	44	35a	35		1.8	0.549	0.:	118 C	0.0457	
15 minute summer	1	1	43		19.5	1.099	0.:	173 C	.2197	
15 minute summer	45	45	12		8.3	1.242	2 0.3	331 0	.0851	
15 minute summer	46	46	29		0.0	0.000) 0.0	000 0	0.0000	
15 minute summer	47	47	38		0.0	0.000	0.0	000 0	0.0334	
15 minute summer	48	48	37		13.0	1.285	0.1	295 C	0.0662	

23.3

7.2

0.919

1.318

0.295

0.104

0.7867

0.0623

15 minute summer

15 minute summer

J1

5

J1 J2

J1

5

15 minute summer J8

File: Temple Hill v1.7 50%block Page 11 Network: S Model: Leonardo Rigui 15/11/2021

69.8

0.0000 0.0000 OK

			Mo 15,	del: Leor /11/2021	hardo Rig	uı		
<u>Result</u>	<u>s for 1 year Criti</u>	cal Storm	Duration	n. Lowest	t mass ba	lance: 99.5	<u>3%</u>	
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	7	10	15.542	0.042	5.8	0.0000	0.0000	ОК
15 minute summer	J2	11	14.469	0.124	29.0	0.0000	0.0000	ОК
15 minute summer	J3	11	14.329	0.153	37.5	0.0000	0.0000	ОК
15 minute summer	8	10	16.553	0.053	8.9	0.0000	0.0000	OK
15 minute summer	26	10	17.543	0.043	8.4	0.0000	0.0000	ОК
15 minute summer	49	10	18.525	0.050	10.4	0.0000	0.0000	ОК
15 minute summer	J4	11	18.129	0.179	38.7	0.0000	0.0000	ОК
15 minute summer	Depth/Area 1	10	17.253	0.053	6.9	0.0000	0.0000	ОК
15 minute summer	J5	10	17.176	0.082	26.1	0.0000	0.0000	ОК

12 13.652 0.169

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

15 minute su	immer .	J9		12	13.58	4 0.167	70.1	0.0000	0.0000	ОК	
15 minute su	ımmer	17		1	16.48	0.000	0.0	0.0000	0.0000	ОК	
15 minute su	Immer	19		1	15.68	6 0.000	0.0	0.0000	0.0000	OK	
Link Event	US		Li	nk	DS	Outflow	Velocity	Flow/Ca	p Link	c	Discharge
(Upstream Depth)	Nod	е			Node	(I/s)	(m/s)		Vol (n	n³)	Vol (m³)
15 minute summer	7		7a		J2	5.8	1.456	0.16	1 0.02	58	
15 minute summer	J2		J2		J3	29.0	0.912	0.36	8 1.06	23	
15 minute summer	J3		J3		13	37.6	0.964	0.47	6 0.73	54	
15 minute summer	8		8		J3	8.9	1.633	0.24	8 0.03	21	
15 minute summer	26		26a		39	8.4	1.675	0.17	7 0.04	64	
15 minute summer	49		49		J4	10.4	1.008	0.23	5 0.09	82	
15 minute summer	J4		J4		42	38.4	1.184	0.94	4 0.63	66	
15 minute summer	Depth/A	rea 1	Depth,	/Area 1	J5	6.9	0.896	0.22	9 0.02	87	
15 minute summer	J5		J5		37	25.9	1.583	0.28	7 0.27	05	
15 minute summer	J8		J8		J9	70.1	1.467	0.43	0 0.47	38	
15 minute summer	J9		19		9	70.2	1.948	0.42	1 0.08	88	
15 minute summer	17		17a		18	0.0	0.000	0.00	0 0.00	00	
15 minute summer	19		19a		J9	0.0	0.000	0.00	0 0.00	00	

File: Temple Hill v1.7 50%blockPage 12Network: SModel: Leonardo Rigui15/11/2021

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.53%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m ³)	Status
2160 minute summer	2	2160	10.626	0.026	1.6	0.0000	0.0000	ОК
2160 minute summer	3	2160	10.702	0.027	1.6	0.0306	0.0000	OK
2160 minute summer	4	2160	10.842	0.022	1.6	0.0252	0.0000	OK
2160 minute summer	6	2160	11.282	0.032	1.6	0.0365	0.0000	ОК
2160 minute summer	ATT/HB Z2	2160	12.778	1.338	18.5	491.7858	0.0000	SURCHARGED
15 minute summer	9	11	13.569	0.169	176.2	0.2412	0.0000	ОК
15 minute summer	10	11	13.926	0.316	161.1	0.4528	0.0000	ОК
15 minute summer	11	12	14.202	0.442	113.9	0.5004	0.0000	SURCHARGED
15 minute summer	12	12	14.618	0.698	108.5	0.7900	0.0000	SURCHARGED
15 minute summer	13	12	14.918	0.838	89.9	0.9474	0.0000	SURCHARGED
15 minute summer	14	12	15.209	0.659	44.2	2.5061	0.0000	SURCHARGED
15 minute summer	15	11	13.934	0.271	75.7	0.3062	0.0000	ОК
15 minute summer	16	10	15.610	0.110	45.3	0.1249	0.0000	ОК
15 minute summer	J6	11	13.941	0.250	32.1	0.0000	0.0000	ОК
15 minute summer	18	10	15.067	0.067	13.6	0.0754	0.0000	ОК
15 minute summer	J7	11	13.944	0.194	19.8	0.0000	0.0000	ОК
15 minute summer	20	10	15.577	0.052	19.9	0.0590	0.0000	ОК
2160 minute summer	21	2160	12.788	0.018	1.8	0.0000	0.0000	ОК
2160 minute summer	22	2160	13.518	0.018	1.8	0.0207	0.0000	ОК
2160 minute summer	23	2160	13.734	0.034	1.8	0.0380	0.0000	ОК
2160 minute summer	24	2160	15.922	0.022	1.8	0.0253	0.0000	ОК
2160 minute summer	25	2160	16.014	0.044	1.8	0.0494	0.0000	ОК
2160 minute summer	ATT/HB Z1	2160	17.169	1.169	22.4	615.8566	0.0000	SURCHARGED
2160 minute summer	27	2160	17.169	1.119	16.1	1.9770	0.0000	SURCHARGED
2160 minute summer	28	2160	17.169	1.097	16.2	1.9389	0.0000	SURCHARGED

Link Event	US Nodo	Link	DS Nodo	Outflow	Velocity	Flow/Cap	Link	Discharge
(Opstream Depth)	Node		Node	(1/5)	(m/s)		voi (m²)	voi (m²)
2160 minute summer	3	3	2	1.6	0.621	0.029	0.0164	181.9
2160 minute summer	4	4	3	1.6	0.695	0.020	0.0146	
2160 minute summer	6	6	4	1.6	0.598	0.040	0.1886	
2160 minute summer	ATT/HB Z2	Hydro-Brake [®]	6	1.6				
15 minute summer	9	9	ATT/HB Z2	176.4	3.841	0.377	2.0944	
15 minute summer	10	10	18	159.8	1.681	0.981	1.8262	
15 minute summer	11	11	10	114.2	1.623	1.174	1.3749	
15 minute summer	12	12	11	108.8	1.545	1.462	2.4924	
15 minute summer	13	13	12	89.9	1.277	1.243	2.6326	
15 minute summer	14	14	J1	40.3	0.899	0.510	0.6793	
15 minute summer	15	15	ATT/HB Z2	76.4	1.249	1.154	0.1858	
15 minute summer	16	16	15	44.9	1.986	0.490	1.5184	
15 minute summer	J6	17	15	32.2	0.496	0.496	0.5276	
15 minute summer	18	18	J6	13.5	1.849	0.779	0.1031	
15 minute summer	J7	19	J6	19.1	0.407	0.296	0.9562	
15 minute summer	20	20	J7	19.8	1.301	0.119	0.3760	
2160 minute summer	 <i>1 1</i>	22	21	1 9	1 72/	0.012	0.01/17	208.6
2100 minute summer	22	22	21	1.0	0.726	0.013	0.0147	208.0
2160 minute summer	23	25	22	1.0	0.720	0.041	0.0091	
2100 minute summer	24	24	23	1.0	0.049	0.021	0.2105	
2160 minute summer	20 ATT/UD 71	23 Hudro Brako®	24	1.0	0.510	0.076	0.1105	
2160 minute summer			20 ATT/UD 71	1.0	0 6 2 1	0.049	2 2264	
2100 minute summer	27	21 20		10.0	0.021	0.048	2.2304	
2100 minute summer	20	20	21	10.1	0.320	0.092	3.3903	

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.53%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	S	itatus
0460 · ·	Node	e (mins)	(m)	(m)	(I/s)	Vol (m ³)	(m³)		
2160 minute summer	29	2160	17.169	1.050	16.2	1.5023	0.0000	SUR	
2160 minute summer	30	2160	17.169	0.984	16.6	1.7379	0.0000	SUR	CHARGED
2160 minute summer	31	2100	17.170	0.856	6.9	1.5118	0.0000	SUR	HARGED
15 minute summer	32	11	17.251	0.151	50.8	0.1709	0.0000	OK	
15 minute summer	33	11	18.090	0.090	35.4	0.1015	0.0000	OK	
15 minute summer	34	10	20.198	0.098	35.9	0.1107	0.0000	OK	
15 minute summer	35	11	20.264	0.064	4.6	0.0719	0.0000	OK	
2160 minute summer	36	2100	17.170	0.720	2.8	2.7349	0.0000	SUR	CHARGED
2160 minute summer	37	2160	17.169	0.569	7.3	0.8142	0.0000	SUR	CHARGED
15 minute summer	38	10	17.896	0.144	51.5	0.1631	0.0000	OK	
2160 minute summer	39	2100	17.169	0.319	2.3	0.3610	0.0000	SUR	CHARGED
15 minute summer	40	10	17.957	0.057	14.4	0.0649	0.0000	ОК	
2160 minute summer	41	2160	17.167	1.117	6.5	1.2635	0.0000	SUR	CHARGED
2160 minute summer	42	2160	17.169	1.099	6.5	1.2430	0.0000	SUR	CHARGED
15 minute summer	43	11	19.260	1.180	72.3	1.3351	0.0000	SUR	CHARGED
15 minute summer	44	10	20.359	0.059	4.7	0.0671	0.0000	ОК	
15 minute summer	1	11	19.414	0.764	52.4	0.8635	0.0000	SUR	CHARGED
15 minute summer	45	10	18.123	0.123	22.5	0.1387	0.0000	ОК	
15 minute summer	46	1	18.197	0.000	0.0	0.0000	0.0000	ОК	
15 minute summer	47	10	17.897	0.047	0.8	0.0528	0.0000	OK	
15 minute summer	48	11	17.373	0.373	34.8	0.4223	0.0000	SURG	CHARGED
15 minute summer	J1	12	15.198	0.697	58.5	0.0000	0.0000	SURG	CHARGED
15 minute summer	5	10	15.654	0.054	19.3	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflow	Velocity	y Flow/	Cap L	ink	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vo	(m³)	Vol (m³)
2160 minute summer	29	29 28		16.2	0.33	7 0.:	106 3.	3043	
2160 minute summer	30	30 29		16.2	0.404	4 0.:	107 4.	6559	
2160 minute summer	31	31 30		6.5	0.25	5 0.0	043 9.	1102	
15 minute summer	32	32 31		49.2	1.364	4 0.4	478 0.	6890	
15 minute summer	33	33 32		35.3	1.954	4 0.3	338 0.	4865	
15 minute summer	34	34 33		35.4	2.270	0.3	373 0.	9882	
15 minute summer	35	35 34		4.6	0.484	4 0.3	378 0.	2017	
2160 minute summer	36	36 31		2.4	0.27	9 0.0	038 2.	8271	
2160 minute summer	37	37 30		7.3	0.33	7 0.0	034 4.	0044	
15 minute summer	38	38 J5		51.0	2.03	1 0.!	566 0.	6726	

15 minute Summer	52	52	51	43.2	1.004	0.470	0.0050
15 minute summer	33	33	32	35.3	1.954	0.338	0.4865
15 minute summer	34	34	33	35.4	2.270	0.373	0.9882
15 minute summer	35	35	34	4.6	0.484	0.378	0.2017
2160 minute summer	36	36	31	2.4	0.279	0.038	2.8271
2160 minute summer	37	37	30	7.3	0.337	0.034	4.0044
15 minute summer	38	38	J5	51.0	2.031	0.566	0.6726
2160 minute summer	39	39	30	2.3	0.189	0.023	0.6991
15 minute summer	40	40	39	14.3	1.223	0.143	0.5209
2160 minute summer	41	41	ATT/HB Z1	6.4	0.367	0.111	1.2944
2160 minute summer	42	42	41	6.5	0.355	0.166	0.1407
15 minute summer	43	43	J4	71.3	1.794	1.766	0.8446
15 minute summer	44	35a	35	4.6	0.697	0.309	0.0931
15 minute summer	1	1	43	49.1	1.234	0.435	0.4868
15 minute summer	45	45	12	22.3	1.524	0.884	0.1849
15 minute summer	46	46	29	0.0	0.000	0.000	0.0000
15 minute summer	47	47	38	-0.8	-0.092	-0.036	0.0642
15 minute summer	48	48	37	32.6	1.903	0.740	0.1164
15 minute summer	J1	J1	J2	55.8	1.127	0.707	2.1693
15 minute summer	5	5	J1	19.3	1.397	0.279	0.0866

CAUSEWAY

15 minute summer 19

19a

File: Temple Hill v1.7 50%blockPage 14Network: SModel: Leonardo Rigui15/11/2021

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.53%

Node Event		US Node		Peak (mins)	Level (m)	Depth (m)	Infle (I/s	ow s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute summ	ner	7		10	15.573	0.073	15	5.5	0.0000	0.0000	ОК	
15 minute summ	ner	J2		12	15.135	0.790	7(0.3	0.0000	0.0000	SURCH	IARGED
15 minute summ	ner	J3		12	15.034	0.858	87	7.9	0.0000	0.0000	SURCH	IARGED
15 minute summ	ner	8		10	16.597	0.097	23	3.9	0.0000	0.0000	OK	
15 minute summ	ner	26		10	17.575	0.075	22	2.4	0.0000	0.0000	OK	
15 minute summ	ner	49		11	19.023	0.548	27	7.7	0.0000	0.0000	SURCH	IARGED
15 minute summ	ner	J4		11	18.799	0.849	97	7.1	0.0000	0.0000	SURCH	IARGED
15 minute summ	ner	Depth/Area	1	12	17.356	0.156	18	8.5	0.0000	0.0000	SURCH	IARGED
15 minute summ	ner	J5		12	17.314	0.220	69	9.5	0.0000	0.0000	OK	
15 minute summ	ner	18		12	13.776	0.293	159	9.8	0.0000	0.0000	OK	
15 minute summ	ner	19		12	13.705	0.288	160	0.5	0.0000	0.0000	OK	
15 minute summ	ner	17		1	16.480	0.000	(0.0	0.0000	0.0000	OK	
15 minute summ	ner	19		1	15.686	0.000	(0.0	0.0000	0.0000	OK	
Link Event		US		Link	DS	Outflo	w v	Veloc	ity Flov	w/Cap	Link	Discharge
(Upstream Depth)		Node			Node	(I/s)		(m/s	5)	,	Vol (m³)	Vol (m³)
15 minute summer	7		7a		J2	15	.4	1.8	82	0.432	0.0534	
15 minute summer	J2		J2		J3	65	.4	1.0	41	0.830	2.3497	
15 minute summer	13		J3		13	78	3.2	1.1	11	0.989	1.3274	
15 minute summer	8		8		13	23	8.8	2.0	67	0.666	0.0681	
15 minute summer	26		26a		39	22	4	2.1	78	0.473	0.1184	
15 minute summer	49		49		J4	25	5.8	1.4	63	0.585	0.1524	
15 minute summer	J4		J4		42	96	5.4	2.4	25	2.370	0.7731	
15 minute summer	De	pth/Area 1	Dep	th/Area	1 J5	18	8.4	1.1	45	0.613	0.0658	
15 minute summer	J5		J5		37	68	8.5	2.0	76	0.760	0.6550	
15 minute summer	J8		J8		19	160).5	1.7	52	0.985	0.9087	
15 minute summer	J9		J9		9	160	.8	2.3	47	0.966	0.1693	
15 minute summer	17		17a		J8	C	0.0	0.0	00	0.000	0.0000	

J9

0.0

0.000

0.000

0.0000

. . .

File: Temple Hill v1.7 50%blockPage 15Network: SModel: Leonardo Rigui15/11/2021

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.53%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
2160 minute summer	2	2160	10.628	0.028	1.8	0.0000	0.0000	ОК
2160 minute summer	3	2160	10.704	0.029	1.8	0.0323	0.0000	ОК
2160 minute summer	4	2160	10.844	0.024	1.8	0.0266	0.0000	ОК
2160 minute summer	6	2160	11.284	0.034	1.8	0.0385	0.0000	ОК
2160 minute summer	ATT/HB Z2	2160	13.155	1.715	22.9	630.2394	0.0000	SURCHARGED
15 minute summer	9	11	13.593	0.193	230.6	0.2769	0.0000	ОК
15 minute summer	10	11	14.075	0.465	201.4	0.6661	0.0000	SURCHARGED
15 minute summer	11	12	14.478	0.718	138.7	0.8121	0.0000	SURCHARGED
15 minute summer	12	12	15.092	1.172	132.2	1.3252	0.0000	SURCHARGED
15 minute summer	13	12	15.517	1.437	107.6	1.6249	0.0000	SURCHARGED
15 minute summer	14	12	15.916	1.366	57.4	5.1929	0.0000	FLOOD RISK
15 minute summer	15	11	13.991	0.328	97.5	0.3704	0.0000	SURCHARGED
15 minute summer	16	10	15.629	0.129	58.8	0.1464	0.0000	ОК
15 minute summer	J6	11	14.006	0.315	41.0	0.0000	0.0000	SURCHARGED
15 minute summer	18	11	15.195	0.195	17.6	0.2200	0.0000	SURCHARGED
15 minute summer	J7	11	14.013	0.263	25.7	0.0000	0.0000	ОК
15 minute summer	20	10	15.584	0.059	25.8	0.0673	0.0000	ОК
1440 minute summer	21	1320	12.789	0.019	2.1	0.0000	0.0000	ОК
1440 minute summer	22	1320	13.519	0.019	2.1	0.0218	0.0000	ОК
1440 minute summer	23	1320	13.736	0.036	2.1	0.0402	0.0000	ОК
2160 minute summer	24	1860	15.924	0.024	2.1	0.0267	0.0000	ОК
2160 minute summer	25	1740	16.016	0.046	2.1	0.0521	0.0000	ОК
2160 minute summer	ATT/HB Z1	1740	17.503	1.503	28.3	737.9177	0.0000	SURCHARGED
2160 minute summer	27	1920	17.505	1.455	20.5	2.5706	0.0000	SURCHARGED
2160 minute summer	28	1740	17.503	1.431	20.6	2.5290	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
2160 minute summer	3	3	2	18	0 642	0 032	0 0178	199.8
2160 minute summer	4	4	3	1.8	0.716	0.023	0.0159	19910
2160 minute summer	6	6	4	1.8	0.619	0.044	0.2039	
2160 minute summer	ATT/HB Z2	Hydro-Brake [®]	6	1.8				
15 minute summer	9	9	ATT/HB Z2	219.7	4.035	0.470	2.5178	
15 minute summer	10	10	J8	200.7	1.819	1.232	2.0894	
15 minute summer	11	11	10	138.9	1.973	1.428	1.3749	
15 minute summer	12	12	11	132.1	1.877	1.776	2.4924	
15 minute summer	13	13	12	109.9	1.561	1.519	2.6326	
15 minute summer	14	14	J1	48.8	0.901	0.619	0.6793	
15 minute summer	15	15	ATT/HB Z2	97.9	1.416	1.480	0.2016	
15 minute summer	16	16	15	58.4	1.960	0.636	1.7943	
15 minute summer	J6	17	15	41.0	0.583	0.633	0.5729	
15 minute summer	18	18	J6	16.3	2.122	0.936	0.1207	
15 minute summer	J7	19	J6	25.2	0.404	0.390	1.1698	
15 minute summer	20	20	J7	25.7	1.338	0.154	0.4189	
1440 minute summer	22	22	21	2.1	1.278	0.014	0.0159	159.8
1440 minute summer	23	23	22	2.1	0.750	0.046	0.0747	
2160 minute summer	24	24	23	2.1	0.672	0.023	0.2340	
2160 minute summer	25	25	24	2.1	0.529	0.085	0.1279	
2160 minute summer	ATT/HB Z1	Hydro-Brake [®]	25	2.1				
2160 minute summer	27	27	ATT/HB Z1	20.4	0.619	0.061	2.2364	
2160 minute summer	28	28	27	20.5	0.345	0.117	3.5963	

CAUSEWAY

15 minute summer

15 minute summer

File: Temple Hill v1.7 50%block Network: S Model: Leonardo Rigui 15/11/2021

Page 16

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.53%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood		Status
	Node	(mins) (m)	(m)	(l/s)	Vol (m³)	(m³)		
2160 minute summer	29	1740	0 17.503	1.384	20.6	1.9800	0.0000	SUR	CHARGED
2160 minute summer	30	1740) 17.502	1.317	20.9	2.3268	0.0000	SUR	CHARGED
2160 minute summer	31	1740) 17.502	1.188	8.7	2.0990	0.0000	SUR	CHARGED
15 minute summer	32	12	2 17.744	0.644	66.1	0.7279	0.0000	SUR	CHARGED
15 minute summer	33	1:	1 18.113	0.113	46.1	0.1281	0.0000	OK	
15 minute summer	34	10	20.214	0.114	46.6	0.1292	0.0000	OK	
15 minute summer	35	1:	1 20.274	0.074	6.0	0.0832	0.0000	OK	
2160 minute summer	36	1560) 17.500	1.050	3.4	3.9911	61.8985	FLO	OD
2160 minute summer	37	1560) 17.501	0.901	8.8	1.2900	0.0000	SUR	CHARGED
15 minute summer	38	12	2 18.188	0.436	66.9	0.4929	0.0000	SUR	CHARGED
2160 minute summer	39	1560	0 17.502	0.652	2.8	0.7374	0.0000	SUR	CHARGED
15 minute summer	40	10	0 17.966	0.066	18.7	0.0741	0.0000	OK	
2160 minute summer	41	1680	0 17.504	1.454	7.9	1.6449	0.0000	SUR	CHARGED
2160 minute summer	42	1680) 17.507	1.437	8.0	1.6247	0.0000	SUR	CHARGED
15 minute summer	43	1:	1 19.976	1.896	92.6	2.1438	0.0000	FLO	OD RISK
15 minute summer	44	1(20.369	0.069	6.1	0.0781	0.0000	ОК	
15 minute summer	1	1:	1 20.224	1.574	68.1	1.7799	0.0000	FLO	OD RISK
15 minute summer	45	1:	1 18.288	0.288	29.3	0.3252	0.0000	SUR	CHARGED
15 minute summer	46	-	1 18.197	0.000	0.0	0.0000	0.0000	ОК	
15 minute summer	47	12	2 18.191	0.341	3.9	0.3858	0.0000	SUR	CHARGED
15 minute summer	48	1	17.958	0.958	45.2	1.0832	0.0000	SUR	CHARGED
				0.000			0.0000		0
15 minute summer	J1	12	2 15.899	1.398	72.6	0.0000	0.0000	FLO	OD RISK
15 minute summer	5	12	2 15.996	0.395	25.0	0.0000	0.0000	SUR	CHARGED
Link Event	US	Link	DS	Outflow	Veloci	ty Flow/	Cap L	ink	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)	Vol	(m³)	Vol (m³)
2160 minute summer	29	29	28	20.6	0.33	39 0.	135 3.	3043	
2160 minute summer	30	30	29	20.6	0.39	97 0.	136 4.	6559	
2160 minute summer	31	31	30	8.6	0.25	54 0.	056 9.	1102	
15 minute summer	32	32	31	60.8	1.52	29 0.	591 0.	8047	
15 minute summer	33	33	32	45.4	1.88	35 0.	435 0.	6749	
15 minute summer	34	34	33	46.1	2.42	26 0.	485 1.	2508	
15 minute summer	35	35	34	6.0	0.52	29 0.	489 0.	2407	
2160 minute summer	36	36	31	3.2	0.2	72 0.	050 2.	8271	
2160 minute summer	37	37	30	8.4	0.33	35 0.	039 4.	0044	
15 minute summer	38	38 .	J5	62.2	2.04	47 0.	690 0.	9075	
2160 minute summer	39	39	30	2.8	0.1	74 0.	028 0.	6991	
15 minute summer	40	40	39	18.6	1.2	53 0.	186 0.	7096	
2160 minute summer	41	41	ATT/HB Z1	7.9	0.38	38 0.	137 1.	2944	
2160 minute summer	42	42	41	7.9	0.35	56 0.	204 0.	1407	
15 minute summer	43	43	J4	90.2	2.20	57 2.	232 0.	8446	
15 minute summer	44	35a	35	6.0	0.74	40 0.	400 0.	1134	
15 minute summer	1	1	43	62.5	1.5	71 O.	554 0	4868	
15 minute summer	45	45	12	28.4	1.6	14 1	129 0	2208	
15 minute summer	46	46	29	0.0	0.00	. 00	000 0.	0000	
15 minute summer	47	47	38	6.4	0.39	98 O.	277 0.	1024	
15 minute summer	48	48	37	41.0	2.32	27 O.	931 0.	1164	

Flow+ v10.0 Copyright © 1988-2021 Causeway Software Solutions Limited

60.1

24.3

1.122

1.672

0.762

0.352

2.1693

0.1306

J1

5

J1

5

J2

J1

15 minute summer J5

15 minute summer J8

15 minute summer J9

15 minute summer 17

15 minute summer 19

15 minute summer Depth/Area 1 Depth/Area 1 J5

J5

J8

J9

17a

19a

File: Temple Hill v1.7 50%block Network: S Model: Leonardo Rigui 15/11/2021

Page 17

0.699

0.876

1.223

1.253

0.000

0.000

0.0658

0.6573

1.0532

0.1973

0.0000

0.0000

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.53%

Node Event		US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute summ	er	7	12	15.869	0.369	20.1	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	J2	12	15.815	1.470	72.1	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	J3	12	15.677	1.501	93.1	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	8	10	16.620	0.120	31.0	0.0000	0.0000	ОК	
15 minute summ	er	26	12	17.653	0.153	29.1	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	49	11	19.596	1.121	36.0	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	J4	11	19.238	1.288	122.8	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	Depth/Area 1	12	17.956	0.756	24.0	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	J5	12	17.890	0.796	83.2	0.0000	0.0000	SURCH	ARGED
15 minute summ	er	J8	11	13.840	0.357	200.7	0.0000	0.0000	ОК	
15 minute summ	er	19	11	13.753	0.336	199.4	0.0000	0.0000	OK	
15 minute summ	er	17	1	16.480	0.000	0.0	0.0000	0.0000	ОК	
15 minute summ	er	19	1	15.686	0.000	0.0	0.0000	0.0000	ОК	
Link Event		US	Link	DS	Outflo	w Velo	ocity Flow	v/Cap	Link	Discharge
(Upstream Depth)		Node		Node	(I/s)	(m	/s)		Vol (m³)	Vol (m³)
15 minute summer	7	7a		J2	20.	0 1	.998	0.561	0.1146	
15 minute summer	J2	J2		J3	78.	81	.120	1.000	2.3497	
15 minute summer	J3	J3		13	95.	6 1	.358	1.210	1.3274	
15 minute summer	8	8		J3	30.	8 2	.154	0.863	0.0846	
15 minute summer	26	26a	a	39	27.	8 2	.228	0.586	0.1630	
15 minute summer	49	49		J4	32.	6 1	.851	0.740	0.1524	
15 minute summer	J4	J4		42	121.	2 3	.048	2.979	0.7731	

37

J9

9

J8

J9

21.0

79.0

199.4

208.7

0.0

0.0

1.193

2.070

1.877

2.564

0.000

0.000

Appendix G – Hydro-Brake Flow Control Details for Z1 and Z2

N.B. A penstock valve will be provided in the Hydro-Brake manhole, upstream of the Hydro-Brake. The Hydro-Brake shall be installed <u>without</u> a bypass door. Details presented are standard details and will be customised to the project at final design stage.

Technical Specification										
Control Point	Head (m)	Flow (l/s)								
Primary Design	1.400	4.100								
Flush-Flo	0.394	3.957								
Kick-Flo®	0.803	3.173								
Mean Flow		3.520								

hydro-int.com/patents

Head (m)	Flow (I/s)
0.000	0.000
0.048	1.043
0.097	2.713
0.145	3.380
0.193	3.638
0.241	3.798
0.290	3.892
0.338	3.941
0.386	3.957
0.434	3.951
0.483	3.929
0.531	3.892
0.579	3.841
0.628	3.768
0.676	3.667
0.724	3.526
0.772	3.334
0.821	3.205
0.869	3.290
0.917	3.373
0.966	3.453
1.014	3.531
1.062	3.608
1.110	3.682
1.159	3.755
1.207	3.827
1.255	3.897
1.303	3.965
1.352	4.032
1.400	4.098

DESIGN ADVICE	The head/flow characteristics of this SHE-0090-4100-1400-4100 Hydro-Brake Optimum® Flow Control are unique. Dynamic hydraulic modelling evaluates the full head/flow characteristic curve.	Hvdro S
!	The use of any other flow control will invalidate any design based on this data and could constitute a flood risk.	International \geq_{\otimes}
DATE	27/09/2021 17:11	SHE 0000 4100 1400 4100
Site	Temple Hill	SITE-0090-4100-1400-4100
DESIGNER	Marcus Wallace	Hudro Brako Ontimum®
Ref	Zone 1	
0.0010		

© 2018 Hydro International, Shearwater House, Clevedon Hall Estate, Victoria Road, Clevedon, BS21 7RD. Tel 01275 878371 Fax 01275 874979 Web www.hydro-int.com Email designtools@hydro-int.com

Technical Specification		
Control Point	Head (m)	Flow (I/s)
Primary Design	2.110	4.100
Flush-Flo	0.359	3.112
Kick-Flo®	0.727	2.509
Mean Flow		3.139

hydro-int.com/patents

Head (m)	Flow (l/s)
0.000	0.000
0.073	1.746
0.146	2.734
0.218	2.986
0.291	3.089
0.364	3.112
0.437	3.092
0.509	3.040
0.582	2.948
0.655	2.786
0.728	2.520
0.800	2.621
0.873	2.727
0.946	2.829
1.019	2.926
1.091	3.020
1.164	3.111
1.237	3.199
1.310	3.284
1.382	3.367
1.455	3.447
1.528	3.526
1.601	3.602
1.673	3.677
1.746	3.750
1.819	3.822
1.892	3.892
1.964	3.961
2.037	4.028
2.110	4.094

DESIGN ADVICE	The head/flow characteristics of this SHE-0082-4100-2110-4100 Hydro-Brake Optimum® Flow Control are unique. Dynamic hydraulic modelling evaluates the full head/flow characteristic curve.	Hydro >
!	The use of any other flow control will invalidate any design based on this data and could constitute a flood risk.	International S ®
DATE	11/10/2021 16:18	SHE 0082 4100 2110 4100
Site	Temple Hill	3112-0002-4100-2110-4100
DESIGNER	Marcus Wallace	Hydro Brako Ontimum®
Ref	Zone 2	

© 2018 Hydro International, Shearwater House, Clevedon Hall Estate, Victoria Road, Clevedon, BS21 7RD. Tel 01275 878371 Fax 01275 874979 Web www.hydro-int.com Email designtools@hydro-int.com

Appendix H – JBA – Flood Risk Assessment

JBA consulting

St Teresa's Land's, Temple Hill, Monkstown, Blackrock, Co Dublin

Flood Risk Assessment

September 2021

www.jbaconsulting.ie

Oval Target Ltd 55 Percy Place BALLSBRIDGE Co Dublin

JBA Project Manager

David Casey Unit 3, Block 660, Greenogue Business Plaza, Rathcoole, Dublin.

Revision History

Revision Ref/Date	Amendments	Issued to
13/02/2018 / v1.0	Draft Report	Oval Target Ltd
01/08/2018 / v2.0	Revised Site Layout	Oval Target Ltd
28/08/2018 / v3.0	Update Drainage Calculations	Oval Target Ltd
15/02/2019 / v4.0	Response to RFI	Oval Target Ltd
15/12/2021 / v5.0	Updated Site Layout	Oval Target Ltd

Contract

This report describes work commissioned by Lisa Rocca, on behalf of Oval Target Ltd, by a letter dated 17/01/2018. Oval Target's representative for the contract was Marcus Wallace of JJ Campbell. David Casey of JBA Consulting carried out this work.

Prepared by		David Casey BSc MSc MCIWEM
		Senior Engineer
Reviewed by		Elizabeth Russell BSc MSc CEnv MCIWEM C.WEM
		Principal Analysist

Purpose

This document has been prepared as a Flood Risk Assessment for Oval Target Ltd. JBA Consulting accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

JBA Consulting has no liability regarding the use of this report except to Oval Target Ltd.

Copyright

© JBA Consulting Engineers and Scientists Limited 2021.

Carbon Footprint

A printed copy of the main text in this document will result in a carbon footprint of 58g if 100% post-consumer recycled paper is used and 73g if primary-source paper is used. These figures assume the report is printed in black and white on A4 paper and in duplex.

JBA is aiming to reduce its per capita carbon emissions.

JBA consulting

Contents

1	Overview	4
1.1	Terms of Reference	4
1.2	Aims & Objectives	4
1.3	Development Proposal	4
2	Site Background	8
2.1	Location	8
2.2	Watercourses	8
2.3	Local and site topography	9
3	Flood Risk Identification	10
3.1	Flood History	10
3.1.1	Internet Search	11
3.2	Predictive Flooding	11
3.2.1	Catchment Flood Risk Assessment and Management Study (Eastern CFRAM)	11
3.2.1	Dun Laoghaire-Rathdown County Council Strategic Flood Risk Assessment	13
3.3	Sources of Flooding	14
3.3.1	Fluvial	14
3.3.2	Coastal	14
3.3.3	Pluvial	15
3.3.4	Groundwater	15
4	Flood Risk Assessment	16
4.1	Flood Risk	16
4.2	Flood Mitigation Measures	18
4.2.1	Ramping of Carpark Entrance	18
4.3	Access	19
4.4	Drainage Design/ Pluvial Flood Risk	20
4.5	Residual Risk	20
4.5.1	Climate Change	20
4.5.2	Failure of the Carysfort-Maretimo Flood Alleviation Scheme	20
4.5.3	Failure of the Boundary Wall	20
5	The Justification Test for Development Management	21
5.1	Strategy	21
5.2	Justification Test: Part 1	21
5.3	Justification Test: Part 2	21
6	Conclusion	23
List of	Figures	
		_
Figure 1	-1 Site Layout	7
Figure 1-	1 Site Location & Hydrological Environment	8
Figure 3-	-1 Floodmaps.ie	10
Figure 3-	-2 Eastern CFRAM Flood Extent Map	12
Figure 3-	-3 Eastern CFRAM Flood Depth Map	12
Figure 3-	4 Eastern CFRAM Tidal Flood Risk Map	13
Figure 3-	-5 DLR SFRA Flood Map	14
Figure 4-	1 Overlay of 0.1% AEP Flood Extent onto Site Layout	16

- Figure 4-1 Overlay of 0.1% AEP Flood Extent onto Site Layout Figure 4-2 Access Road Photograph
- Figure 4-3 Boundary Wall
- Figure 4-4 Mitigation Measures

1 Overview

Under The Planning System and Flood Risk Management Guidelines for Planning Authorities (DoEHIG & OPW, 2009) proposed development must undergo a Flood Risk Assessment to ensure sustainability and effective management of flood risk. This requires a review of all available flood information and assessment of Flood Zones for the development site.

1.1 Terms of Reference

JBA Consulting was appointed to prepare a Flood Risk Assessment (FRA) for a proposed residential development located at Temple Hill, Blackrock, Co Dublin.

1.2 Aims & Objectives

This study is being completed to inform the planning application for the proposed site. It aims to identify, quantify and communicate to applicant, Planning Authority officials and other stakeholders the risk of flooding to land, property and people and the measures that would be recommended to manage the risk.

The objectives are to:

- Identify potential sources of flood risk,
- Confirm the level of flood risk and identify key hydraulic features,
- Assess the impact the proposed development has on flood risk in respect to the issue of attenuation and displacement of flooding,
- Develop appropriate flood risk mitigation and management measures which will allow for the long-term development of the site.

Recommendations for development have been provided in the context of the OPW / DoEHLG planning guidance, "The Planning System and Flood Risk Management ". A review of the likely effects of climate change, and the long-term impacts this may have on any development has also been undertaken.

1.3 Development Proposal

Oval Target Limited intend to apply to An Bord Pleanála for planning permission for a Strategic Housing Development on a site of c. 3.9 ha at 'St. Teresa's House' (A Protected Structure) and 'St. Teresa's Lodge' (A Protected Structure) Temple Hill, Monkstown, Blackrock, Co. Dublin.

The development will consist of a new residential and mixed use scheme of 493 residential units and associated residential amenities, a childcare facility and café in the form of (a) a combination of new apartment buildings (A1-C2 and D1 – E2); (b) the subdivision, conversion and re-use of 'St. Teresa's House' (Block H); and (c) the dismantling, relocation and change of use from residential to café of 'St. Teresa's Lodge' (Block G) within the site development area. A detailed development description is now set out as follows:

The proposal provides for the demolition (total c. 207 sq m GFA) of (a) a single storey return (approx. 20 sq m) along the boundary with The Alzheimer's Society of Ireland; (b) the ground floor switch room (approx. 24.9sq.m.), (c) ground floor structures northwest of St. Teresa's House (26.8sq.m), (d) basement boiler room northwest of St. Teresa's House (17.0 sq.m), (e) ground floor structures northeast of St. Teresa's house (22.0sq.m.) (f) basement stores northeast of St. Teresa's house (67.8 sq.m.) and (g) a non - original ground floor rear extension (approx. 28.5 sq m) associated with the Gate Lodge.

The new development will provide for the construction of a new mixed use scheme of 487 no. apartment units in the form of 11 no. new residential development blocks (Blocks A1-C2 and D1 – E2) as follows:

- Block A1 (5 storeys) comprising 37 no. apartments (33 no. 1 bed units and 4 no. 2 bed units)
- Block B1 (10 storeys) comprising 55 no. apartments (37 no. 1 bed units, 10 no. 2 bed units, 8 no. 3 bed units)
- Block B2 (8 storeys) comprising 42 no. apartments (28 no. 1 bed units, 9 no. 2 bed units and 5 no. 3 bed units)
- Block B3 (8 storeys) comprising 42 no. apartments (28 no. 1 bed units, 9 no. 2 bed units and 5 no. 3 bed units)
- Block B4 (5 storeys) comprising 41 no. apartments (4 no. studio units, 4 no. 1 bed units, 27 no. 2 bed units and 6 no. 3 bed units)
- Block C1 (3 storeys) comprising 10 no. apartments (1 no. studio units, 3 no. 1 bed units and 6 no. 2 beds)
- Block C2 (3 storeys) comprising 6 no. apartments (2 no. 1 bed units and 4 no. 2 bed units) together with a creche facility of 392 sq m at ground floor level and outdoor play area space of 302 sq m.
- Block C3 (1 storey over basement level) comprising residential amenity space of 451 sq m.
- Block D1 (6 storeys) comprising 134 no. apartments (12 no. studio units, 22 no. 1 bed units, 90 no. 2 bed units and 10 no. 3 bed units).
- Block E1 (6 storeys) comprising 70 no. apartment units (34 no. 1 bed units, 26 no. 2 bed units and 10 no. 3 bed units).
- Block E2 (6 storeys) comprising 50 units (1 no. studio units, 29 no. 1 bed units, 18 no. 2 bed units and 2 no. 3 bed units).

Each new residential unit has associated private open space in the form of a terrace / balcony.

The development also provides for Block H, which relates to the subdivision and conversion of `St. Teresa's House' (3 storeys) into 6 no. apartments (5 no. 2 bed units and 1 no. 3 bed unit) including the demolition of non-original additions and partitions, removal and relocation of existing doors, re-instatement of blocked up windows, replacement of windows, repair and refurbishment of joinery throughout and the upgrade of roof finishes and rainwater goods where appropriate.

It is also proposed to dismantle and relocate 'St. Teresa's Lodge' (1 storey) from its current location to a new location, 180 m south west within the development adjacent to Rockfield Park. St. Teresa's Lodge (Block G) will be deconstructed in its original location and reconstructed in a new location using original roof timbers, decorative elements and rubble stonework, with original brickwork cleaned and reused where appropriate.

It is also proposed to dismantle and relocate 'St. Teresa's Lodge' (1 storey - gross floor area 69.63sq m) from its current location to a new location, 180 m south west within the development adjacent to Rockfield Park. St. Teresa's Lodge (Block G) will be deconstructed in its original location and reconstructed in a new location using original roof timbers, decorative elements and rubble stonework, with original brickwork cleaned and re-used where appropriate. A non - original extension (approx. 28.5 sq m) is proposed for demolition. The current proposal seeks a new extension of this building (approx. 26.8 sq m) and a change of use from residential to café use to deliver a Part M compliant single storey building of approx. 67.4 sq m

Total Open space (approx. 15,099.7 sq m) is proposed as follows: (a) public open space (approx. 11,572.3 sq m) in the form of a central parkland, garden link, woodland parkland (incorporating an existing folly), a tree belt; and (b) residential communal open space (approx. 3,527.4 sq m) in the form of entrance gardens, plazas, terraces, gardens and roof terraces for Blocks B2 and B3. Provision is also made for new pedestrian connections to Rockfield Park on the southern site boundary and Temple Hill along the northern site boundary.

Basement areas are proposed below Blocks A1, B1 to B4 and D1 (c. 7,295 sq. m GFA). A total of 252 residential car parking spaces (161 at basement level and 91 at surface level); 1056 bicycle spaces (656 at basement level and 400 at surface level); and 20 motorcycle spaces at basement level are proposed. 8 no. car spaces for creche use are proposed at surface level.

The proposal also provides for further Bin Storage areas, Bike Storage areas, ESB substations and switch rooms with a combined floor area of 356.2 sq m at surface level.

The development also comprises works to the existing entrance to St. Teresa's; the adjoining property at 'Carmond'; and residential development at St. Vincent's Park from Temple Hill (N31/R113). Works include the realignment and upgrade of the existing signalised junction and associated footpaths to provide for improved and safer vehicular access/egress to the site and improved and safer access/egress for vehicular traffic to/from the property at 'Carmond' and the adjoining residential development at St Vincent's Park.

Emergency vehicular access and pedestrian/cyclist access is also proposed via a secondary long established existing access point along Temple Hill. There are no works proposed to the existing gates (Protected Structure) at this location.

The associated site and infrastructural works include provision for water services; foul and surface water drainage and connections; attenuation proposals; permeable paving; all landscaping works including tree protection; green roofs; boundary treatment; internal roads and footpaths; and electrical services including solar panels at roof level above Blocks A1, B1 - B4, C1-C3, D1, E1, E2, as depicted in Figure 1-2 over page.

Figure 1-1 Site Layout

Figure 1-2 Site Cross Section

2 Site Background

2.1 Location

SS

The proposed development is located in St Teresa's lands in Temple Hill, Blackrock, Dublin. The site is located in an urban environment. The N31 runs along the sites northern boundary, while existing residential developments border the site to west and south-east. The Rockfield Park playing pitches are located to the south of the development.

The site is zoned for residential use under the Dun Laoghaire Rathdown Development Plan 2016-2022. Figure 2-1 outlines the site location and local mapping.

Figure 2-1 Site Location & Hydrological Environment

2.2 Watercourses

The site is located in close proximity to the coastline, with Dublin Bay located c. 350m northeast of the site boundary. The main watercourse is identified as the Carysfort-Maretimo Stream which is located c. 20m from the site's western boundary. The Carysfort-Maretimo Stream runs predominantly in a north-easterly direction in the area and discharges to Dublin Bay c. 400m north of the site.

Flood defences are in place along the Carysfort-Maretimo in the vicinity of the development. The stream is culverted under the Temple Road at the sites north-western boundary.

Other watercourses in the area have been identified as the Priory Stream which is located c. 650m northwest and the Sradbrook Stream which is located c. 850m to the southeast.

2.3 Local and site topography

The site covers an area of approximately 4 ha. There is a fall noted across the site that runs in an SW-NE direction towards the coastline. The topography varies from a high of c. 21mOD along the sites southern boundary to a low of c. 12.5mOD with the boundary with the Temple Road.

3 Flood Risk Identification

An assessment of the potential and scale of flood risk at the site is conducted using historical and predictive information. This identifies any sources of potential flood risk to the site and reviews historic flood information. The findings from the flood risk identification stage of the assessment are provided in the following sections. Further detail on the Planning Guidelines and technical concepts are provided in Appendix A.

3.1 Flood History

A number of sources of flood information were reviewed to establish any recorded flood history at, or near the site. This includes the OPW's website, www.floodmaps.ie and general internet searches.

The OPW host a National Flood hazard mapping website, www.floodmaps.ie, which highlights areas at risk of flooding through the collection of recorded data and observed flood events. See Figure 3-1 for historic flood events in the area.

- Flooding at Barclay Road and Temple Road, Blackrock, Co. Dublin, on the 24th Oct 2011- Overtopping of the Carysfort-Maretimo Stream following heavy rainfall. Located at the sites northern boundary.
- Flooding at Carysfort Avenue, Blackrock, Co. Dublin, on the 24th Oct 2011-Overtopping of the Carysfort-Maretimo Stream following heavy rainfall. Located c. 450m to the south of the site.
- Flooding at Newtownpark Avenue, Blackrock, Co. Dublin, on the 24th Oct 2011. Pluvial/Surface water flooding following heavy rainfall. Located c. 1km south-east of the site.

The October 24th flood event occurred along Temple Rd at the site's north-eastern boundary. Based on the proximity of the site to this flood point, inundation of a section of the site was likely but restricted to the most northern boundary. Based on the site topography it is unlikely that any areas containing the proposed residential uses were affected.

Figure 3-1 Floodmaps.ie

3.1.1 Internet Search

An internet search was conducted to gather information about whether or not the site was affected by flooding previously. While there were no results for flooding affecting the site itself, there were reports confirming the flooding in the areas as highlighted on Floodmaps.ie (Section 3.1).

3.2 Predictive Flooding

The area has been a subject to two predicative flood mapping or modelling studies and another related study:

- Eastern Catchment Flood Risk Assessment and Management Study (2016);
- OPW Preliminary Flood Risk Assessment (2011);
- Dun Laoghaire-Rathdown Development Plan 2016-2022 (2016).

The level of detail presented by each method varies according to the quality of the information used and the approaches involved. The Eastern CFRAM is the most detailed assessment of flood extent and supersedes the fluvial flood outlines presented by the OPW PRFA study.

3.2.1 Catchment Flood Risk Assessment and Management Study (Eastern CFRAM)

The Eastern CFRAM Study is the most detailed mapping undertaken in the Dublin region. It commenced in June 2011 with final flood maps issued during 2016. The Eastern CFRAM Study involves detailed hydraulic modelling of rivers and their tributaries, including the Carysfort-Maretimo, which is the nearest watercourse to the site. Following the detailed hydraulic modelling, flood maps were produced for the 10%, 1% and 0.1% AEP flood events.

The available flood maps have been reviewed and confirm that the most northern extent of the site, and directly adjacent to the Carysfort-Maretimo is located within Flood Zone A (defended) & B. The flood defences along the Carysfort-Maretimo provides flood protection up to the 1% AEP flood event. See Figure 3-2 for the flood maps

Flooding appears to originate from Carysfort-Maretimo system following surcharging of the culvert system underneath the Temple Rd, directly downstream of the site. The stream overtops its right bank which results in inundation of c. 40m into the site.

Review of the available data confirms that the 0.1% AEP flood level flood depth within the site is ranges from 0-250mm in the affected area, refer to Figure 3-3.

Coastal flooding does not impact on or in the vicinity of the proposed development. Review of the Eastern CFRAM data indicates a 0.5% AEP and 0.1% AEP flood level of 3.04mOD and 3.25mOD respectively. Refer to Figure 3-4 for the tidal flood extents in the area.

Figure 3-2 Eastern CFRAM Flood Extent Map

Figure 3-3 Eastern CFRAM Flood Depth Map

Figure 3-4 Eastern CFRAM Tidal Flood Risk Map

3.2.1 Dun Laoghaire-Rathdown County Council Strategic Flood Risk Assessment

The Strategic Flood Risk Assessment (SFRA) has been prepared as part of the Dun Laoghaire-Rathdown Development Plan (DLR) 2016-2022. The SFRA informs the strategic land use planning decisions by providing an assessment of flood risk within the region and enables the application of the sequential approach, including Justification Test. A range of flood map sources (OPW PFRA, Eastern CFRAM etc.) were reviewed as part of the SFRA to inform the use of the Justification Test for developments at risk of flooding. In addition to the Justification Test, various flood management policies and objectives are outlined for inclusion within the Dun Laoghaire-Rathdown Development Plan. See Appendix B for the stated policies.

An extract of the flood map produced as part of the SFRA is presented in Figure 3-5. It should be noted that the SFRA flood maps are based on the Eastern CFRAM flood outlines, which places the western boundary of the site within Flood Zone B and therefore, at a moderate risk of flooding.

The flood defences along the Carysfort-Maretimo is referred to within the SFRA, as site 16, as follows "These defences are of robust construction, although consideration of the impacts of overtopping, either through higher return period events or with the impact of climate change on river flows, should be taken into account in any site specific flood risk assessment. Breach assessment is unlikely to be required"

JBA consulting

Figure 3-5 DLR SFRA Flood Map

3.3 Sources of Flooding

The initial stage of a Flood Risk Assessment requires the identification and consideration of probable sources of flooding. These sources are described below:

3.3.1 Fluvial

Sources of historic flood information have been researched as part of the FRA. The main watercourse in the area is the Carysfort-Maretimo which runs adjacent to the site's northern boundary (<20m). The Carysfort-Maretimo provides the main source of flood risk to the development.

Review of floodmaps.ie indicates the occurrence of historic flooding along Temple Road in the vicinity of the site's northern boundary. The source of flooding originated from overtopping of the Carysfort-Maretimo following heavy rainfall. It is unclear if the site itself was inundated, but based on the site topography, any inundation onsite would have been restricted to the north-western corner.

Review of the Eastern CFRAM and SFRA flood maps places the eastern boundary of the site within Flood Zone A, albeit defended, and Flood Zone B. The site is protected by a flood wall located along the Carysfort-Maretimo that provides protection up to the 1% AEP standard. Although the site is protected from the 1% AEP flood event, as per the guidelines the flood zone extents should not be inclusive of any flood defences. It is considered therefore that the eastern boundary of site is within Flood Zone A/B.

Specific mitigation measures will be outlined in Section 4 to manage the identified fluvial flood risks to the site.

3.3.2 Coastal

The site is located within 300m of the coastline, therefore the risk of tidal flooding has been assessed. There has been no recorded instance of coastal flooding in the study area. Review of the Eastern CFRAM flood map for the area indicates a 0.5% AEP and

0.1% AEP flood level of 3.04mOD and 3.25mOD respectively, while the lowest site level onsite is c. 12.5mOD.

Considering the above, coastal flooding is not considered to present a flood risk to the site.

3.3.3 Pluvial

Pluvial or surface water flooding is the result of rainfall-generated flows that arise before run-off can enter a watercourse or sewer. A number of sources have been researched such as the OPW PFRA flood mapping and review of floodmaps.ie. Based on review of the available information there is no recorded or predicted pluvial flooding at the site or immediate surrounding area.

Specific measures in relation to the proposed stormwater system to manage onsite surface water flows is referred to Section 4.

3.3.4 Groundwater

The OPW PFRA was reviewed and did not indicate groundwater flooding at the site or surrounding area. The GSI groundwater vulnerability for the site is classified as 'moderate' and 'high' which indicates a groundwater depth of ranging from 3-10+m.

Furthermore, there are no karst features in the area which would indicate areas at risk of groundwater flooding.

In summary, there is no known risk of groundwater flooding in this area and has been screened out at this stage.

4 Flood Risk Assessment

4.1 Flood Risk

Review of the available sources of flooding outlined in Section 3 confirms that there has likely been some inundation at the site along its most northern boundary. The is based on recoded flooding that has occurred along Temple Road in October 2011. Furthermore, both the Eastern CFRAM and Dublin City SFRA flood maps identifies that the eastern boundary of the site lies within Flood Zone A (defended) and B.

The main flood risk is identified as overtopping of the Carysfort-Maretimo Steam adjacent to the site's boundary. Flood defences have been constructed along the Carysfort-Maretimo that provide protection to the 1% AEP standard. Therefore, flood risk is only considered at the site from overtopping of the Carysfort-Maretimo flood defences or exceedance events. The only possible receptor at risk of inundation is identified as the ground floor carpark at Block A1.

With reference to Figure 4-1, it is shown that the proposed ground/basement car park entrance is located in Flood Zone A/B. The apartments contained in Block A1 are situated on the first floor at a level of 16.48mOD and therefore, are not at risk of flooding. The associated ground floor FFL for Block A1 is 13.15mOD.

Figure 4-1 Overlay of 0.1% AEP Flood Extent onto Site Layout

Following the site visit it was noted that a stone-faced block boundary wall currently runs along the site's boundary with the access roadway along the site north-western boundary, see Figure 4-2. The existing wall, gateway and access road will be retained for access to the proposed development. It is reasonable to assume that the boundary wall was not incorporated into the CFRAM model, as it is an informal, ineffective structure as per standard CFRAM modelling practices. Therefore, its potential impact on the flood extents has not been accounted for.

Figure 4-2 Access Road Photograph

Given the construction type and height, the wall is reasoned to be of sufficient stature/size to impede overland flow at least up to 300mm. It will therefore have an impact upon the flood extents depicted in the CFRAM flood map presented in Figure 3-2 and Figure 4-1. It is noted that there is a gateway, and the impact of this is discussed in the following paragraphs.

Although the extents will be changed by the wall, the overland flow rates overtopping the Carysfort-Maretimo Steam will remain the same so the overall impact will be an increase in flood depths along the road, when compared to the CFRAM outputs.

Further analysis has been carried out to appraise the potential impact of the boundary wall on the CFRAM flood extents. The methodology employed was to use the Manning's equation to calculate the flow rate along the access road based on the maximum flood depth (250mm) and CFRAM flow path width (17.5m). Refer to Table 4-1 for a summary of the parameters used in the Manning's calculation.

Parameter	CFRAM extents	Existing condition
Width	17.5	8.3
Slope	0.004	0.004
Manning's	0.035	0.35
Qm³/s	1.44	1.44
Depth (m)	0.25	0.27

Table 4-1 Manning's Calc Parameters

Based on a lowest road level of 12.47mOD (from topographic survey) and maximum flood depth of 250mm (from CFRAM 0.1% AEP depth map), this equates to a flood level of 12.72mOD. Applying the Manning's equation gives a flow of 1.44m³/s.

JBA

As noted, the boundary wall will constrict water into a narrower flow path than that presented in the CFRAM flood maps. This has been estimated as a reduction in width from c. 17.5m to c.8.3m. The Manning's equation was then recalculated with the same parameters as provided in Table 4-1, but reducing the pathway width to 8.3m whilst maintaining a flow of 1.44m³/s. This process gave a revised flood depth of 270mm, or a 20mm increase in flood levels when compared with the CFRAM indicated levels. This indicates a possible flood level of 12.74mOD on Temple Road in the 0.1% AEP event.

The resulting 0.1% AEP flood extents are presented in Figure 4-3, including the levels used in the calculation process.

Although the gateway is being retained through the wall, ground levels on the inside (development side) of the gate are c. 12.85mOD, which is above the calculated flood level and mean that, although there may be a small area of inundation in the gate opening, water depths will not be sufficient to enter the site and form the flood extent indicated by the CFRAM mapping.

Figure 4-3 Boundary Wall

Following the above calculations, a freeboard of 410mm is available above the calculated 0.1% AEP flood level to the ground floor (non-residential) development in Block A1 (13.15m OD). Furthermore, the presence of a boundary wall, which will be retained post-development will prevent the ingress of flood waters onto the site.

Any potential floodwaters that enter the site upstream of the boundary wall will be redirected onto the access road due to the proposed ramping of the basement car park access. This is discussed further in Section 4.2.1

4.2 Flood Mitigation Measures

4.2.1 Ramping of Carpark Entrance

The Eastern CFRAM Study flood depth map indicates a maximum flood depth of 250mm, during the 0.1% AEP flood event. Following the calculations undertaken in Section 4.1, the depth has been increased to 270mm which equates to an estimated flood level of 12.74mOD. Although this depth of flooding will be retained on the road, it is prudent to ensure access to the buildings, and in particular the basement, are above this level. To achieve this, the car park entrance is ramped up from 12.5mOD

to 13.35mOD, which places the car park entrance some 500mm above the 0.1% AEP flood level. Refer to Figure 4-2 for the proposed mitigation measure for the car park entrance in proximity to the Carysfort-Maretimo.

The ramping of the car park to protect the basement level from inundation will have the secondary effect of redirecting any overland flow back into the access road, as depicted in Figure 4-2. To ensure that flood waters are prevented from entering the site, the proposed kerb adjacent to the apartment block should be set at a minimum level of 12.95mOD.

As discussed above, any flood waters which enter the site from the upstream end of the boundary wall will be below the level of the ramped entrance and will be re-routed through the gateway and back onto the road.

Furthermore, all service/ ventilation openings in this area should be positioned a minimum of 400mm above the existing ground level to ensure no secondary flow pathway is provided. This will give a freeboard of approximately 150mm over the estimated flood depths of 250mm.

Figure 4-4 Mitigation Measures

4.3 Access

The main site entrance to the development is provided within Flood Zone C, refer to Figure 1-1. However, the emergency entrance is situated within Flood Zone A (defended). Given the estimated maximum flood depth of 250mm, access to the carpark can be maintained during a flood event, if required.

If pedestrian access to Block A1 is provided from lands within Flood Zone A/B, the access threshold should be set to 400mm above the external hardstanding area, again providing a freeboard of approximately 150mm.

In summary, as the main site entrance is located within Flood Zone C, access is not considered to be an issue during a potential flood event at the site.

4.4 Drainage Design/ Pluvial Flood Risk

A stormwater system will be incorporated within the development design to manage surface water run-off from the site. Stormwater attenuation tanks are included as part of the design to ensure that stormwater discharge is limited to its greenfield equivalent. The attenuation tank is designed to retain a 100 year rainfall event including an allowance for climate change (20%). The design discharge is 8.17 l/s while the total required attenuation volume is 1600m³. Attenuation is provided over two attenuation structures each providing 50% of the storage volume. JBA Consulting have not review the calculations as part of this FRA and are assumed to be calculated to the best practice guidelines.

Further to the attenuation storage, additional SuDs measures have incorporated into the design. This includes the implementation of green roofs to the apartment blocks covering a minimum of 60% of the roof area. Permeable paving has also been provided which has been designed to intercept the first 5mm of runoff.

To minimise the risk to the development, all finish floor levels, thresholds or basement entrances should be raised by 100mm from the surrounding hardstanding areas to risk of inundation.

4.5 Residual Risk

Residual risks are defined as risks that remain after all risk avoidance, substitution and mitigation measures have been taken. The flood risk assessment identifies the following as the main sources of residual risk to the proposed development:

4.5.1 Climate Change

The impacts of climate change can result in more frequent flood event with a higher volumes of river flow. The potential residual risk to the development will need to be considered in this context.

The Carysfort-Maretimo Steam flood defences includes an allowance for climate change and freeboard. This will ensure that site will remain protected from the potential increase in the occurrence and magnitude of flood events due to climate change.

The 0.1% AEP flood event will result in inundation of up to 250mm in some areas of the site. For the purpose of the FRA, the 0.1% AEP is taken to represent the 1% AEP plus climate change scenario. The proposed mitigation measures have been designed to protection against these flood events.

4.5.2 Failure of the Carysfort-Maretimo Flood Alleviation Scheme

The Carysfort-Maretimo flood defences provide protection up to the 1% AEP flood event including an allowance for climate change. During a possible failure of the flood defence scheme, the resulting flood outlines would be expected to be similar to the current modelled CFRAM results for the 0.1% AEP flood event.

The proposed flood defence measures (refer to Section 4.2.1) have been designed to provide protection above the 0.1% AEP flood level. Therefore, if the flood defences were to fail, the basement car park will remain protected.

4.5.3 Failure of the Boundary Wall

Following review of Figure 4-1, failure of the boundary wall is not considered likely. However, in the event of a failure the flood extents would be expected to be similar to the CFRAM flood map outlines presented in Figure 3-3 and Figure 4-1. The access road to basement level has been raised by 400mm to provide a freeboard of 500mm over the 0.1% AEP flood levels if failure of the boundary wall was to occur.

5 The Justification Test for Development Management

5.1 Strategy

The planning guidance appropriate to this development is, "The Planning System and Flood Risk Management" and sets out a framework within which the planning authority should consider proposals for new development in areas of flood risk. This framework is called the Justification Test for Development Management.

Although the revised calculations confirm that the site is located in Flood Zone C, since the proposed development is classified as a highly vulnerable development and is located adjacent to Flood Zone A/B, a Justification Test (JT) is provided.

In the following text, each of the criteria within the JT is responded to as they relate to the proposed residential development. For ease of reading, where the responses are supported by technical detail which is contained in later parts of the report, an appropriate chapter has been referenced.

5.2 Justification Test: Part 1

The subject lands have been zoned or otherwise designated for the particular use or form of development in an operative development plan, which has been adopted or varied taking account of the Planning Guidelines.

The DLR Development Plan 2016-2022 outlines the development strategy for the area. Zonal development maps have been produced including the development site. These are based on predictive flood mapping, historical flood event data and other indicative data sets such as benefiting land maps. The Development Plan shows the site to be zoned for residential. Objective A- To protect and-or improve residential amenity. There are a number of specific policies in relation to managing flood risks, which have been incorporated into the design recommendations.

Conclusion: The development Passes Part 1 of the Justification Test. The site is zoned as residential Objective A which aims to protect and/or improve residential amenity.

5.3 Justification Test: Part 2

The proposal has been subject to an appropriate flood risk assessment that demonstrates:

(i) the development proposed will not increase flood risk elsewhere and, if practicable, will reduce overall flood risk;

As part of the FRA, calculation have been undertaken to confirm that the development is not located in a flood zone or will interact with a conveyance route. The site is defended from the 1% AEP flood event, and is located outside of Flood Zone C, therefore it will have no impact on these events.

Conclusion: The site is shown to be located in Flood Zone C, and is not at risk from the 1% and 0.1% AEP flood events. The site will not impact upon the Flood Zone A (1% AEP) event as it protected by the Carysfort-Maretimo flood defences.

(ii) the development proposal includes measures to minimise flood risk to people, property, the economy and the environment as far as reasonably possible;

The proposed FFL level for the residential apartments within Block A is 16.48mOD which provides a freeboard of 3.58m over the expected Flood Zone A/B flood levels. The basement carpark entrance will be protected from inundation by raising the entrance above the expected flood depths.

Conclusion: The residential dwellings within the site are all located with Flood Zone C. Flood risks to the basement carpark have been identified and mitigation measures proposed. The car park entrance will be raised by to provide a 400mm freeboard over the expected maximum flood depth.

(iii) The development proposed includes measures to ensure that residual risks to the area and/or development can be managed to an acceptable level as regards the adequacy of existing flood protection measures or the design, implementation and funding of any future flood risk management measures and provisions for emergency services access.

Residual risk have been assessed for the site and have been considered regards the proposed mitigation measures. Access to the development is provided within Flood Zone C via Temple Road.

Conclusion: The proposed mitigation measures have been designed to provide flood protection from the identified residual risks. Site access to the development is provided for in Flood Zone C.

(iv) The development proposed addresses the above in a manner that is also compatible with the achievement of wider planning objectives in relation to development of good urban design and vibrant and active streetscapes.

See supporting planning application documents for details of the urban design.

6 Conclusion

JBA Consulting were commissioned by Oval Target Ltd to undertaken a Flood Risk Assessment (FRA) for a proposed residential development located along Temple Rd, Blackrock, Dublin.

Historical flood information was reviewed and confirmed that flooding occurred along Temple Road during October 2011. If inundation occurred at the site during this flood event, it would have likely been limited to the area alongside the site's northern boundary.

Review of the Eastern CFRAM and DLR SFRA flood maps indicates that the northern boundary of the site is within Flood Zone A (defended)/B. However, based on the site visit and provided calculations, it is confirmed that the development is not at risk from the 0.1% AEP flood event. Flood defences are located along the Carysfort-Maretimo and provides protection from a 1% AEP standard. The 0.1% AEP event will result in inundation of the access road, but floodwaters will be prevented from entering the site.

A single apartment block intersects the Flood Zone A/B outline. Residential apartments are restricted to the 1st floor level at 16.48mOD. The proposed basement / ground floor car park entrance is located in Flood Zone C, with a freeboard of 600mm above the estimated 1% AEP flood level. All residential properties onsite are located in Flood Zone C.

To mitigate against the identified flood risks, it is necessary to provide a barrier to the ingress of floodwater to the basement car park. This can be achieved by raising the proposed carpark entrance to provide a 400mm freeboard of over the expected 0.1% AEP flood level. The kerbs along the car park entrance should be set to a level of 12.95mOD. All openings to the basement in this area should be raised to a minimum of 400mm over the existing ground level.

A stormwater system has been designed to manage surface water runoff from the site. An attenuation tank is included as part of the design and has a storage capacity of 1,545m³/s to retain a 100 year rainfall event, including a 20% allowance for climate change. Stormwater discharge will be limited to the site's greenfield equivalent of 8.17l/s. In addition, green roofs have been provided in the apartment blocks cover a minimum of 60% of the roof area, which will not be connected to the stormwater system. Permeable paving has also been provided.

Residual risks have been identified as potential increase in stream flow & frequency of flooding resulting from climate change and failure of the Carysfort-Maretimo flood defences. The proposed mitigation measures above are sufficient to protect the site from the identified residual risks.

As a result of the analysis, design and mitigation measures the proposed development is considered to be in line with the core principles of the Planning Guidelines and objectives outlined in the DLR Development Plan 2016-2022.

Appendices

A Understanding Flood Risk

Flood risk is generally accepted to be a combination of the likelihood (or probability) of flooding and the potential consequences arising. Flood risk can be expressed in terms of the following relationship:

Flood Risk = Probability of Flooding x Consequences of Flooding

A.1 Probability of Flooding

The likelihood or probability of a flood event (whether tidal or fluvial) is classified by its Annual Exceedance Probability (AEP) or return period (in years). A 1% AEP flood has a 1 in 100 chance of occurring in any given year.

In this report, flood frequency will primarily be expressed in terms of AEP, which is the inverse of the return period, as shown in the table below and explained above. This can be helpful when presenting results to members of the public who may associate the concept of return period with a regular occurrence rather than an average recurrence interval, and is the terminology which will be used throughout this report.

Table: Conversion between return periods and annual exceedance probabilities

Return period (years)	Annual exceedance probability (%)
2	50
10	10
50	2
100	1
200	0.5
1000	0.1

A.2 Flood Zones

Flood Zones are geographical areas illustrating the probability of flooding. For the purposes of the Planning Guidelines, there are 3 types or levels of flood zones, A, B and C.

Zone	Description
Flood Zone A	Where the probability of flooding is highest; greater than 1% (1 in 100) from river flooding or 0.5% (1 in 200) for coastal/tidal flooding.
Flood Zone B	Moderate probability of flooding; between 1% and 0.1% from rivers and between 0.5% and 0.1% from coastal/tidal.
Flood Zone C	Lowest probability of flooding; less than 0.1% from both rivers and coastal/tidal.

It is important to note that the definition of the flood zones is based on an undefended scenario and does not take into account the presence of flood protection structures such as flood walls or embankments. This is to allow for the fact that there is a residual risk of flooding behind the defences due to overtopping or breach

and that there may be no guarantee that the defences will be maintained in perpetuity.

Indicative Flood Zones (OPW & DoEHLG 2009)

A.3 Consequence of Flooding

Consequences of flooding depend on the hazards caused by flooding (depth of water, speed of flow, rate of onset, duration, wave-action effects, water quality) and the vulnerability of receptors (type of development, nature, e.g. age-structure, of the population, presence and reliability of mitigation measures etc.).

The 'Planning System and Flood Risk Management' provides three vulnerability categories, based on the type of development, which are detailed in Table 3.1 of the Guidelines, and are summarised as:

- Highly vulnerable, including residential properties, essential infrastructure and emergency service facilities;
- Less vulnerable, such as retail and commercial and local transport infrastructure;
- Water compatible, including open space, outdoor recreation and associated essential infrastructure, such as changing rooms.

B Dun Laoghaire-Rathdown Development Plan 2016-2022

B.1.1 Flood Management Policies

Policy El3: Surface Water Drainage and Appropriate Assessment It is Council policy to require that a Sustainable Drainage System (SuDS) is applied to any development and that site specific solutions to surface water drainage systems are developed, which meet the requirements of the Water Framework Directive and the associated River Basin Management Plans and 'Water Quality in Ireland 2007-2009' (EPA 2011) or any updated version of the document.

5.2.5.2 Policy CC15: Flood Risk Management. It is Council policy to support, in cooperation with the OPW, the implementation of the EU Flood Risk Directive (2007/60/EC) on the assessment and management of flood risks, the Flood Risk Regulations (SI No 122 of 2010) and the Department of the Environment, Heritage and Local Government and the Office of Public Works Guidelines on 'The Planning System and Flood Risk Management, (2009)' and relevant outputs of the Eastern District Catchment and Flood Risk Assessment and Management Study (ECFRAMS Study).

The Council will ensure the implementation of the DoEHLG/OPW Guidelines 'The Planning System and Flood Risk Management', (2009) and DoECLG Circular Pl2/2014 (or any updated/superseded document) in relation to flood risk management within the County. A Strategic Flood Risk Assessment of the County has been carried out as part of this County Development Plan process (Refer to Appendix 13). Implementation of the Guidelines will include the following:

- Avoid, reduce and/or mitigate, as appropriate, in accordance with the Flood Risk Management Guidelines, the risk of flooding within the flood risk areas indicated in the ECFRAM study and the Strategic Flood Risk Assessment of the County and any other flood risk areas that may be identified during the period of the Plan or in relation to a planning application (Refer to Section 6 of Appendix 13).
- Development proposals in areas where there is an identified or potential risk of flooding or that could give rise to a risk of flooding elsewhere must be accompanied by a Site-specific Flood Risk Assessment, and Justification Test where appropriate, (Refer to Development Management section 8.2.10.4 and Appendix 13 SFRA for further detail).
- Development that would be subject to an inappropriate risk of flooding or that would cause or exacerbate such a risk at other locations shall not normally be permitted.
- Where certain measures proposed to mitigate or manage the risk of flooding associated with new developments are likely to result in significant effects to the environment or European sites downstream, such measures will undergo environmental assessment and Habitats Directive Assessment, as appropriate.
- Flood Risk Management and Strategic Flood Risk Assessment (SFRA) shall be incorporated into the preparation of all Local Area Plans and any other lower tier plans.
- Regard shall be had to any future flood hazard maps, flood risk maps and flood risk management plans prepared as part of the Eastern District Catchment Flood Risk Assessment and Management Study and future iterations of other similar studies of impacts of climate change.
- Where flood protection or alleviation works take place the Council will ensure that the natural and cultural heritage and rivers, streams and watercourses are protected and enhanced.

- Existing wetland Habitats within the County which serve as flood protection/management measures shall be managed and enhanced.
- The Council will also require that all proposed flood protection or alleviation works will be subject to Appropriate Assessment (AA) to ensure there are no likely significant effects on the integrity, defined by the structure and function, of any Natura 2000 sites and that the requirements of Article 6 of the EU Habitats Directive are met.

Offices at Dublin Limerick

Registered Office 24 Grove Island Corbally Limerick Ireland

+353(0)61 345463 info@jbaconsulting.ie www.jbaconsulting.ie Follow us: 🏏 in

JBA Consulting Engineers and Scientists Limited

Registration number 444752

JBA Group Ltd is certified to: ISO 9001:2015 ISO 14001:2015 OHSAS 18001:2007

Appendix I – JBA – Surface Water Audit

JBA Project Code	2019s0083
Contract	St. Teresa's Lands, Temple Hill, Monkstown, Blackrock, Co. Dublin
Client	JJ Campbell & Associates
Date	14 November 2021 – Rev 6.0
Author	Chris Wason
Subject	Stormwater Audit - Stage 1 Report

1 St. Teresa's Lands, Temple Hill, Monkstown, Blackrock, Co. Dublin.

1.1 Introduction

JBA have been engaged for the purposes of undertaking a Stage 1 SW Audit relating to the above development on proposals developed by JJ Campbell and Associates (JJC) for a planning application on behalf of Oval Target Limited.

The application concerns the demolition of some existing buildings and to convert St. Teresa's House into 2 & 3 bedroom apartments. In addition, 11 apartment blocks and basement car parking will be constructed to provide a total of 487 apartments. The site location is shown in Figure 1-1 below.

Figure 1-1 - Site Location - Aerial Photo taken before buildings were demolished

The audit has been completed in accordance with Dún Laoghaire Rathdown County Council's (DLRCC) Stormwater Audit Procedure (Rev 0, Jan 2012). The results of the audit are set out in the table below.

JBA Project Code	2019s0083
Contract	St. Teresa's Lands, Temple Hill, Monkstown, Blackrock, Co. Dublin
Client	JJ Campbell & Associates
Date	14 November 2021 – Rev 6.0
Author	Chris Wason
Subject	Stormwater Audit - Stage 1 Report

JBA renewabl energy

1.2 Stage 1 Audit

Design Parameter	Audit Result
Proposed Development	The subject site is located within Dun Laoghaire County Development Plan 2016-2022 and is a mature site with existing buildings and associated infrastructure.
	The site is approximately 3.9 ha. in total, comprising a drained area of 2.1189 ha.
	The subject of this Stage 1 stormwater audit is to review the proposed surface water drainage design and sustainable urban drainage system proposals for the proposed development.
	The review is based on JJ Campbell Planning Report Rev 1, dated September 2021, and associated drawings as provided on 17 September 2021.
	It is proposed that site is split into two zones for SW drainage purposes as shown below
	RCKFELD PARK
Delevent	
Relevant Studies/Documents	 Greater Dublin Strategic Drainage Strategy (GDSDS) Greater Dublin Regional Code of Practice for Drainage Works The SUDs Manual (CIRIA C753) - 2015 DLR County Development Plan 2016-2022
Key Considerations & Benefits of SUDs	 The key benefits and objectives of SUDs considered as part of this audit and listed below include: Reduction of run-off rates; Provision of volume storage; Volume treatment provided; Reduction in volume run-off; Water quality improvement; Biodiversity.

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA consulting

JBA

Page 2 of 8

JBA Project Code 2019s Contract Dublir		2019s0083 St. Teresa's Lands, Temple Hill, Monkstown, Blackrock, Co. Dublin	JBA
Client JJ Car Date 14 Nov		ampbell & Associates lovember 2021 – Rev 6.0	
Author Chris Wason			
Subject		Stormwater Audit - Stage 1 Report	
Site Characteristics		istics Soil: 13 nr. soil infiltration tests were undertaken by Ground invest Approximately 50% passed with infiltration rates ranging fro 2.506x10-6 m/s, and 50% failed. Generally, the eastern side o to fair better in the infiltration tests. The UKSuds web site too SOIL type 4.	tigations Ireland. m 1.824x10-5 to f the site seemed gives a value of

On the basis of the soil tests undertaken JJC have taken a SOIL value of 3 (SPR of 0.37) as being more representative of the site which seems reasonable. This would imply that the site has some ability to infiltrate runoff to ground in some areas.

Rainfall (basis for surface water pipeline network design):

Rainfall parameters can be estimated using Met Éireann data, using the Flood Studies Report (FSR) values or the values in the GDSDS. The Met Éireann method can be more representative of a site if selected correctly and this has been done by JJC. A comparison of values used by JJC and those estimated by JBA is shown below:

	JJ Campbell	JBA Value
Rainfall model:	Windes	Met Éireann
M5-60 (mm):	17	16.6
Ratio R:	0.3	0.275

Taken from Met Eireann data (E 321811;N 229008) The values adopted in the Windes model are rounded up into the appropriate 'zone' and as recommended by the UKSuds site and are acceptable

JJC have increased the increased rainfall rates and storage requirement by 20% to allow for climate change in the hydraulic calculations. 10% is recommended in the GDSDS for rainfall so this is acceptable.

Qbar

From the UKSuds website the SAAR value is 900mm and for an edited value of SOIL of 3, the Qbar is 8.17 l/s

Values taken from the WWW.uksuds.com website – SAAR 900; SOIL 3 (SPR 0.37) for the site location.

Adopting the above values gives for the site south of the stream, based on 2.119 ha, the nett area of the site as required by DLRCC (see drg. 2011-07/C3):

	JJC edited value	uksuds Default Value
Qbar (l/s)	8.17	13.73
Q30		29.24
Q100		35.83

JJC have therefore taken a more conservative value which is acceptable.

Contributing Areas (as extracted from App D of the Planning Report)

Page 3 of 8

JBA	Project	Code
-----	---------	------

Contract Client Date Author Subject

2019s0083 St. Teresa's Lands, Temple Hill, Monkstown, Blackrock, Co. Dublin JJ Campbell & Associates 14 November 2021 - Rev 6.0 Chris Wason Stormwater Audit - Stage 1 Report

Roofs / She	ds/ etc 1.228	Hectares	100	% Impervie	ous	1.23	Hectar
Permeable	Parking 0.141	Hectares	80	% Impervi	ous	0.11	Hectar
Road / Dath	0.750	Hostaroo	00	/ Impond		0.69	Heater
Total	s 0.750 2 12	Hectares	90	Total Im	pus	0.08 2 02	Hectar
	2.12	10010103		. otar nii		2.02	riccial
50% of Volu	me to be attenuated in Z	one 1 using Sto	ormtech Cel	ls Notion Tor			
DU% OF VOIU	me to be attenuated in Z	one 2 using Co	ncrete Atter	nuation Tar	ТК		
Green roo required b Drainage	of area = 0.3935 h by DLRCC. • Calculations	a. Providir	ng a % o	f 64% w	vhich is grea	ter than	that
calculations separate	is development a ons for the storm r ly on a spreadshe	network on etwork on et. Cause	ly and the way FLC	ning rep ne stora DW calc	ge has been culations hav	assess e been	ed
submitte	a for the revised s	cneme.					
Although	a one-hundred v	ear storm h	nas beer	n used f	or pipe desid	gn purpo	oses.
the maxi	num rainfall was	set at 50 m	nm/hr. W	e would	d normally re	comme	nda
two (or 5) year return perio	od for desig	n and th	ne netwo	ork checked	for up to	o 100
year stor	m for flooding. Pip	be sizing is	not nor	mally cr	itical when a	a restrict	ed ol
) is applied.						
Full calcu	lations, including	the storag	e facilitie	es in the	e model, hav	ve been	run fo
the 1 in 3	0 and a1 in 100 y	ear storms	s + 20%	climate	change to e	ensure th	nat
adequate	e levels of service	are achiev	/ed.				
•							
Storage	Tank Assessme	nt booksee				ا مارید ما	4
he site a	age tank analysis	nas been	for Zone	a sprea	Zone 2 A to	ne whoi ital allow	e oi iable
outflow of	8.17 l/s has beer	used and	a total s	torage	required of 1	1600m3	abio
including	20% climate cha	nge) based	d on loca	al rainfal	ll data.		
-		· · · -					
The tanks	have been check	ked using F	-LOW	nn 1 /70)E m () = = = -	oolar k	م ما م
A Stormte	cn SC/40 system	i is proposi	ea in Zoi and adia	ne 1 (/3	building B2 i	esign ne	ad 0' 2
772m3 a	nd design head or	f 2.166m) l	both with	bass fr	orward flow	of 4.1 l/s	∠ s. An
allowance	of 20% climate c	hange has	also be	en inclu	ided in the la	atest	
assessme	ent (v1.7).						
We have	the following com	ments on t	he prop	osals;	a constant d	liooborg	- - f
۱.	The spreadsheet, 3 17 l/s which doe	s not take	izing, as into acc	sumes: ount a v	a constant d arving head	/dischar	ae ue
r	elationship. The (GDSDS red	commen	ds that	volume sho	uld be	90
i	ncreased by 20-3	0% to allow	w for this	and a	check done	using a	digita
r	nodel at detailed	design sta	ge. How	ever, th	e tanks have	e also be	en
C	checked and desig	gned in FL	OW hyd	raulic m	odel.		
2.	The head adopted	l is 1.4m fo	or Zone '	and 2.	11m in zone	e 2 in the	e repo
١	vith pass forward	each of 4.	1 I/s (8.2	I/S IN to	otal). The hy	drobrake	9
(aetalis provided in R2mm respectively	Appendix	G provid	bed and	Driffice Size 0	i yumm	and
3 1	t is noted that Zor	y which are	ardes to	the Car	equale. vsfort stream	n/culver	t The
J. I	8 AEP is indicat	ed in the F	RA as 1	2.75m	This would	mean th	e tha
t	he outfall could be	e surchara	ed which	n would	affect the di	scharge	rate
á	and tank performa	ince. Thes	se paran	neters s	hould be che	ecked by	/ JJC
4. I	t is noted that Zor	ne 1 discha	arges to	an exist	ting DN225 p	oublic S	N
	/	~ -		,			

sewer (at Mh 9002) on Temple Hill Road, IL 12.77mm. This line could

JBA Project Code	2019s0083
Contract	St. Teresa's Lands, Temple Hill, Monkstown, Blackrock, Co. Dublin
Client	JJ Campbell & Associates
Date	14 November 2021 – Rev 6.0
Author	Chris Wason
Subject	Stormwater Audit - Stage 1 Report

JBA

 also be subject to surcharge in times of flood and the tank design should be checked by JJC. 5. Are there any groundwater concerns for the stormtech unit? If GV within 1m of the base then the unit may need to be lined to protect 					
SuDS Measures Considered	SuDS Technology	Comments			
	Green Roofs	Proposed on all apartment blocks, even those <300m2. Overall green roof coverage exceeds the 60% requirement of DLRCC. Total roof area on drg C11 = 6090m2 of which 3935m2 is green (65%)			
	Swale/ Filter Drain / Infiltration trench	Swales were considered but discounted due to the number of mature trees and possible damage to roots. Road runoff is directed into the landscaped areas except for 2 key low points. It is assumed that filter drains will be used where required for main drain runs. Detail to be provided			
	Permeable Paving	Proposed to intercept all impermeable areas of the site but not clear how this is achieved. Relative impermeability has been assumed. It is likely that that some infiltration will take place in some areas.			
		350mm is stated of stone subbase with 30% porosity. Due to the poor infiltration of the ground a high-level overflow is proposed. Is it assumed that the area below this pipe is available for interception of flow?			
	Soakaways	No soakaways are proposed. They could be considered in more suitable areas			
	Petrol Interceptor	None proposed. These should be considered where road/car park runoff is collected before discharge to the stream, or to the foul network in the case of underground car park drainage.			
	Other Sediment Management	Generally, road runoff to landscaped areas. No details shown of how runoff will be intercepted			
	Surface Water Attenuation	 Attenuation will be provided by way of; A. Green roofs – 5mm interception B. Permeable paving – 5mm interception C. Underground storage tanks a. Tank 2 is an RC tank due to site constraints. RC tanks are generally not preferred. LA approval will be required. b. Tank 1 is a Stormtech or similar unit. 			
	Rain water harvesting	None proposed			
	Detention Basins, Retention Ponds, Stormwater Wetlands	No detention basins are proposed due to site geometry.			
	Tree Root Structural Cell Systems, Bio-retention.	None proposed. Could structural cell systems be considered for new trees?			

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA consulting

JBA

JBA Project Code

Contract

Client Date Author

Subject

2019s0083 St. Teresa's Lands, Temple Hill, Monkstown, Blackrock, Co. Dublin JJ Campbell & Associates 14 November 2021 – Rev 6.0 Chris Wason Stormwater Audit - Stage 1 Report

Interception of flow	It is a requirement of the GDSDS that a minimum of 5mm of runoff is intercepted i.e. is retained on site. This will apply to non-green roof areas and all other impermeable areas. The GDSDS allows for 80% paved and 0% permeable. CIRIA 753 Table 24.6 provided deemed to satisfy rules. The full extent of permeable paving and the contributing areas should be clarified as table 24.6 considers that only an equivalent area can be considered for interception storage for unlined pavement if infiltration capacity >1x10-6 m/s. If less, then up to 5 times the pavement area can be considered as extra contributing area.
	Green roofs are deemed to satisfy.
	JJC have provided an overall calculation for volume stored in permeable paving and green roofs but these calculations do not necessarily apply to interception of flow from all impermeable area. Also, it needs to be clear if all impermeable areas are intercepted not just a gross figure. It is not clear how the non-green roof areas are intercepted. The impermeable roof area, not counting the green roof area = (6090 - 3935) = 2155m2. Paved area excluding permeable paving = 7500m2 of which 2300m2 are paths and generally assumed to discharge to landscaped areas Impermeable area to be intercepted = (2155+5200) x0.8 = 5884m2. Permeable paving = 1200m2 therefore an additional 1200m2 can be deemed or 6000m2 if in areas with good permeability. How are all areas to be intercepted? JJC should clarify that the interception of flow satisfies the CIRIA report requirements.
Surface Water Drainage Design	 The design is at planning stage and detailed design has been provided; The site is split into two zones for drainage purposes The discharge from tank 2 will be connected to the existing stream/culvert in the northeast corner of the site The discharge from tank 1 will be to an existing Mh9002 located on a DN225 public sewer. Underground car park drainage is shown connected to the foul system via a Petrol interceptor Green roofs are proposed SI indicated relatively poor drainage but may be acceptable in some local area. High level overflows are proposed in the permeable paving
SuDS Management Train for water quality and flood protection	The SuDs philosophy, as set out in the GDSDS, has been given consideration and, in particular, the criteria set out in Figure 6.1 of the manual. Criterion 1.1 – interception of first 5mm of rainfall – see comments above Criterion 1.2 – treatment volume of events larger than 5mm i.e. 10mm rainfall Criterion 3 – no flooding predicted for 30-year storm and no property flooding for 100 year storm. Hydraulic analysis has been undertaken. Criterion 4.3 is used for all attenuation storage Qbar pass forward flow is used for control split equally between the two tanks
Climate Change	An allowance of 20% increase in flows has been included for climate change in the latest model for the rainfall intensities for the purposes of sizing the attenuation storage in FLOW. 20% was used for initial sizing in the spreadsheet. This adequately addresses the recommendation of 10% increase for rainfall as set out in table 6.2 of the GDSDS.
Discharge Rate / Flow Control	Flow control from each tank is 4.1 l/s at a head of 1.4m & 2.11m. Outlet diameter is approximately 90mm and 83mm which is ok.

JBA consulting

JBA

JBA

JBA Project Code	2019s0083
Contract	St. Teresa's Lands, Temple Hill, Monkstown, Blackrock, Co. Dublin
Client	JJ Campbell & Associates
Date	14 November 2021 – Rev 6.0
Author	Chris Wason
Subject	Stormwater Audit - Stage 1 Report

Exceedance flows	Consideration has been given to exceedance flow.
Health & Safety and Maintenance Issues	The proposed drainage system comprises SuDS devices, green roofs, traditional road gullies, manholes, attenuation systems and underground pipes. These elements, with the level of detail provided, are considered acceptable from a Health & Safety perspective once supplier/manufacturers guides are followed and complied with during the detailed design, construction and operation.
	Optimum performance of the SuDS treatment train is subject to the frequency of maintenance provided. At detailed design stage, it is recommended that a maintenance regime be adopted.
	Particular consideration is required at detailed design stage to the design, maintenance requirements and whole life plan (and replacement) of the SuDS system as a whole.
	Regular maintenance of the hydrobrake will be required to remove any blockages, particularly in the wake of heavy rainfall events or local floods. A bypass mechanism should be provided in case of blockage and some form of alarm for notification of same to the maintenance organisation responsible.
	Petrol interceptors have been provided in u/g car park areas. These should be fitted with an audible high-level silt and oil alarm for maintenance and safety purposes. Regular inspection and maintenance is recommended for the petrol interceptor.
	Please note that silt and debris removed from the petrol interceptor during maintenance will be classified as contaminated material and should only be handled and transported by a suitably licensed contractor and haulier and disposed of at a suitably licensed landfill only.
Audit Result	Please refer to the Feedback Form attached for comments and designers responses

Audit Report prepared by:	Chris Wason BEng, CEng MICE Principal Engineer
Approved by:	Michael O'Donoghue BEng CEng MIEI Senior Engineer

Note: JBA Consulting Engineers & Scientists Ltd. role on this project is as an independent reviewer/auditor. JBA Consulting Engineers & Scientists hold no design responsibility on this project. All issues raised and comments made by JBA are for the consideration of the Design Engineer. Final design, construction supervision, with signoff and/or commissioning of the surface water system so that the final product is fit for purpose with a suitable design, capacity and life-span, remains the responsibility of the Design Engineers.

www.jbaconsulting.ie

www.jbaenergy.com

www.jbaconsulting.com www.jbarisk.com

JBA Project Code2019s0083ContractSt. Teresa's Lands, Temple Hill, Monkstown, Blackrock, Co.
DublinClientJJ Campbell & AssociatesDate14 November 2021 – Rev 6.0AuthorChris WasonSubjectStormwater Audit - Stage 1 Report

Appendix A – Audit Feedback Form

JBA Consulting Stormwater Audit Stage 1 - Rev 1 Project: Residential Development at St Teres's, Temp

Residential Development at St Teres's, Temple Hill Rd, Blackrock Project Nr. Date: 2019s0083 22/09/2021 JBA Reviewers Chris Wason - Principal Engineer

Item No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative
Date:	22/09/2021	22/09/2021	
	Information Provided		
	C1 - Existing Site C1 - Existing Site Plan.pdf		
	C11 - Roof Areas.pdf		
	C13 - Foul Discharge.pdf		
	C14 - Diversion mannole details.pdf		
	C2-0 - Foul and Surface Water - A0.ndf		
	C2-1 - Foul and Surface Water.pdf		
	C2-10- Foul Long Section.pdf		
	C2-11 - Combined Long Section.pdf		
	C2-2 - Foul and Surface Water.pdf		
	C2-3 - Foul and Surface Water.pdf		
	C2-4 - Foul and Surface Water.pdf		
	C2-5 - Foul and Surface Water.pdf		
	C2-7 - Foul and Surface Water.pdf		
	C2-9 - Storm Long Section.pdf		
	C3 - Qbar.pdf		
	C5 - Tree Root Protection.pdf		
	C6-1 - Suds Zone.pdf		
	C6-2 - Zone 1 Attenuation.pdf		
	C6-3 - Zone 2 Attenuation.pdf		
	D1 - Demolition Plan.pdf		
	El-1 - Flood Directions Site Plan ndf		
	F1-2 - Flood Return Period.pdf		
	G01 - Water Main Layout.pdf		
	Planning Report - Vol 1.pdf		
	Si-1 - Soakaway Tests.pdf Plan.pdf		
	General		
1	Microdrainage Calculation	A full design including the tank configurations and simulation	Updated Causeway calculations issued on the 27.09.21
	Microdrainage calculations were not provided but they appear to be similar	runs for the 30 and 100 year storms should be provided to	
	those previously reviewed at Pre planning stage which were designed on 100	ensure that the required levels of service are achieved	
	year storm return but maximum 50mm/hr rainfall.		
	Tanks were not sized in the model and no simulation runs carried out		
2	Attenuation tanks		Tanks have been sized using local rainfall data which is greater than that generated by the model
	1 - The spreadsheet used for the storage calculation uses a fixed discharge	The tanks sizing should be confirmed at detailed design stage	Both tanks volume includes a 20% increase in volume for climate change.
	head. GDSDS recommends that the volume should be increased by 20-30% to	in the Hydraulic model.	Stormtech Tank in Zone 1 has an additional 0.6m layer of angular stone giving an additional storage volume of 100m ³
	allow for a varying head relationship although it is acknowledged that the		Concrete Tank in Zone 2 has a free bore of 0.95m which gives an additional 370m ³ storage.
	spreadsneet uses locally derived rainfall which is greater than that generated		
	by the model and little difference in volume may be the result.		
	2 - the 100 year flood level would indicate that the flow controls and outfalls		
	may be surcharged.	Should the the storage units and flow controls should be	Both tanks have additional storage of at least 20% for climate change and an additional 100m ³ in the Stormtch Tank and 370m ³ in the concrete
		checked against a surcharged head?	
	3 - the flow control head adopted for tank 1 is 1.4m and that for tank 2 is 3m		
	in the report and drawings with pass forward flow of 4.65 l/s. The details	Ensure the details provided match the proposals and that	Heads have been co-ordinated on the drawings, report and hydro-InternationI design calculations.
	provided in the Appendix do not tally with the proposals	TWL level on tank as shown in the drawing is as proposed.	
	4 - no details of groundwater are provided	Does GW affect the stormtech tank? should it be lined to	
		protect GW?	Trail hole has been dug to formation and left open at the Stormtech locations, no water ingress, see response to queries from DLRCoCo
	5 - pg. 14 Qbar of 11.63 l/s should be corrected to 9.35 l/s		
		JJC to correct or clarify	
			Qbar has been amended.
L		1	

ive	Acceptable / Not Acceptable
	Accepted
	Accepted
lume of 100m³	tanks have been modelled in FLOW - No Flood 100 yr +10% CC.
	A final check against possible surcharge should be made in
	FLOW at detailed design stage.
itormtch Tank and 370m ³ in the concrete tank.	
	No response provided. For
	DLRCC to comment
sponse to queries from DLRCoCo	

Item No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative	Acceptable / Not Acceptable
3	Filter drains	the use of filter drains/trenches will assist in the interception	We will review the use of filter drains at detailed design stage. The mature trees being retained make the wide spread use of filter drains difficult.	Accepted
	The full extent of the drainage network has not yet been fully designed and	of runoff and could be considered in the detail design phase .	Similar issue arise with the traditional pipe drainage which had to be designed to avoid the heavily rooted areas.	
	detailed. Consideration could be given for the use of filter drains where	Can consideration could be given to soakaways in some areas		
	possible.	of the site where ground conditions are more suitable?	Infiltration tests indicate that the site is not suitable for soakaways.	
4	Interception and treatment			Not Acceptable
	interception of 5mm run off is proposed but this is via a total storage	JJC to clarify how all areas are intercepted for 5mm of run off	Interception storage is split up into two separate zones, Z1 and Z2 and is split 50/50. See drawing C7 for clarification	(see note 7)
	capacity calculation which does not show that each impermeable area is			See 7 Delow
	Intercepted and compliant with CIRIA 753 table 24.6.			
	Is it assumed that the volume beneath any overflow nine in the nermeable			
	paving is available for interception of flow?	JJC to clarify and provide calculations if necessary to show	Volume below interception storage is available for interception flow. Areas are shown on drawing C7	
		areas intercepted		
	green roofs are deemed to satisfy but how are non green roofs intercepted.		All new building have green roofs, min 60%.	
		JJC to clarify	Existing St Catherines Hosue has no green roof but the roof area is 330m ² , which is only 0.8% of the overall area of the site.	
		,	The existing Gate Lodge roof will discharge to the new extesnion roof to the rear of the gate lodge, which is a green roof	
5	Basement Drainage	Details should be provided at detailed design stage.	Basement drainge drawings C4-1 and C4-1 were issued on the 27.09.21	Accepted
	No details of basement drainage provided.	Please confirm if basement drainage is to go to the four		
6	Other SuDs measures	Consider using tree pits for new trees if they are to bring any	To be investigated with Mitchell and Associates (Landscape Architects)	Accepted
	possible use of tree pits where new trees are to be introduced	additional benefits.		
	<u>12/10/2021</u>			08/11/2021
7	Interception of 5mm is required from all impermeable surfacing. A high level	JJC to demonstarate how ALL areas are adequately	See updated Interception Drawing C7.	Accepted
	of interception provided in some area does not compensate for no	intercepted and in accordance with guidance given in table	Interception is broken in Z1 and Z2, roughly 43% / 57% in each Zone.	(see revised Planning Report.
	interception in other areas.	24.7. Green roofs are deemed to satisfy for the area covered.	Interception within Zones 1 and Zone 2 is broken down into a further 13 zones.	Non-green roofs to discharge to
	A total volume calculation of the site interception does not demonstrate how	It is not clear from table 24.7 if non green roofs can also be	Direction of flow from paved areas into Interception with the 13 zones is shown on drawing C7.	green roof element)
	all areas are adequatelky intercepted in accordance with guidance given in	eleborate on this aspect and/or seek LA approval	Because of mature trees the widespread use of Swales / Infiltration trenches was examined but could not be implemented but swales / infiltarion	
	Table 24.7 of the CIRIA manual	recorde on this aspect and/or seek in approval.	trenches have been intoduced where they do not damage existing mature trees, see C7 and C2.	

Appendix J – Irish Water– Confirmation of Feasibility

A pre-connection enquiry for 521 units was made to IW - Confirmation of Feasibility for 521 units was received from IW on 10th June 2020. Units in scheme has been reduced to 493.

Uisce Éireann Rosca GP 448

Cathrach Theas Cathair Chortai Irish Water

PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Oifig Sheachadta na

Lisa Rocca Oval Target Ltd First Floor 55 Percy Place Dublin 4 D04E1W7

10 June 2020

Dear Lisa Rocca,

Re: Connection Reference No CDS20002536 pre-connection enquiry -Subject to contract | Contract denied

Connection for Housing Development of 521 unit(s) at St Teresa's Lands, Templehill, Blackrock, Co. Dublin

Irish Water has reviewed your pre-connection enquiry in relation to a water and wastewater connection at St Teresa's Lands, Templehill, Blackrock, Co. Dublin.

Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the networks, as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water networks can be facilitated.

Water:

New connection to the existing network is feasible without upgrade.

Connection should be via a new 200mm ID pipe main to be laid to connect the site development to the existing 400mm DI main and a bulk meter to be installed on the connection main. This meter will be connected up to telemetry online.

A secondary connection main of 200mm ID pipe main may be laid to connect the site development to the existing 150mm DI main. For resilience purposes, so a control valve should be present on this connection main and set to closed during normal operations.

This Confirmation of Feasibility to connect to the Irish Water infrastructure also does not extend to your fire flow requirements. Please note that Irish Water cannot guarantee a flow rate to meet fire flow requirements and in order to guarantee a flow to meet the Fire Authority requirements, you may need to provide adequate fire storage capacity within your development.

In order to determine the potential flow that could be delivered during normal operational conditions, an onsite assessment of the existing network is required.

Wastewater:

New connection to the existing network is feasible without upgrade.

There are Irish Water pipes within and in close proximity of the site boundaries. The Developer will be required to survey the site to determine the exact location of the pipes. Any trial investigations should be carried out with the agreement and in the presence of the Local Authority Inspector.

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghniomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

You are advised that structures or works over or in close proximity to Irish Water infrastructure that will inhibit access for maintenance or endanger structural or functional integrity of the infrastructure are not allowed. Separation distances between the Irish Water infrastructure and proposed structures, other services, trees, etc. have to be in accordance with the Irish Water Codes of Practice and Standard Details.

If you wish to divert the asset to facilitate the development, you must have entered into a diversion agreement prior to commencing. Prior to submitting your planning application, you are required to submit these detailed design proposals to Irish Water Diversion Team via email address <u>diversions@water.ie</u> for review and approval.

Strategic Housing Development:

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. In advance of submitting your full application to An Bord Pleanåla for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details. A design proposal for the water and/or wastewater infrastructure should be submitted to Irish Water for assessment. Prior to submitting your planning application, you are required to submit these detailed design proposals to Irish Water for review.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact Deirdre Ryan from the design team on 022 54620 or email deiryan@water.ie. For further information, visit <u>www.water.le/connections.</u>

Yours sincerely,

M Duga

Maria O'Dwyer Connections and Developer Services Appendix K – Irish Water– Statement of Design Acceptance

Lisa Rocca First Floor, 55 Percy Place Dublin 4 Dublin D04E1W7

3 August 2021

Uisce Éireann Bosca OP 448 Oillig Sheachuidta m Cathrach Theas Cathair Chorcai

Irish Water PO Box 448, South City Delivery Office, Cork City

Re: Design Submission for St Teresa's Lands, Templehill, Co. Dublin (the "Development"), water in (the "Design Submission") / Connection Reference No: CDS20002536

Dear Lisa Rocca,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "Self-Lay Works"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Alvaro García Email: agarcía@water.ie

Yours sincerely,

Monne Marcio

V Yvonne Harris Head of Customer Operations

Stiürthöiri / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Owyer

Oifig Chláraithe / Registered Office: Teach Colvil, 24-25 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhír Chláraithe in Éirinn / Registered in Ireland No.: 530363

Appendix L – Irish Water Drawings, 4 Number Drawings

Legend

Lege	pu								
Storm	water Gravity Mains (Irish Water Owned)	50	Lamphole	Storm F	-ittings	I	Storm Culverts S	ewer	Gravity Mains (N
4	Surface	•	Standard		Vent/Col	0	Storm Clean Outs	ł	Combined
Storm	water Gravity Mains (Non-Irish Water Owned)	01 BCB	Other; Unknown	N TAFE	Other; Unknown	Sewer	Gravity Mains (Irish Water owned)	ł	Foul
ł	Surface	Storm I	nlets	Storm [Discharge Points	ł	Combined	ł	Overflow
Storm	Manholes	0	Gully	Ţ	Outfall	ł	Foul	ł	Unknown
Ħ	Cascade	٠	Standard	31	Overflow	ł	Overflow		
31	Catchpit	10 A 10	Other: Unknown		Soakaway	ł	Unknown		
ų]	Hatchbox			ST UE	Other; Unknown				

Instructions that gives this imformation as to the position of its underground network as a general approximation are international to the underground network as a general provided by each Local Authority in freiand. It is based on the best available information in the event of excavations or other works being carried out in the individuely of the network. The orusis is on the event of excavations or other works being carried out in the evact location of the network. The orusis is on the event of parties carrying out the works of eacting the evact location of the network. The orusis is on the event of methanical approximation is not an even of generally shown but their works being carried out. Service pipes are not generally shown but their WATER presence should be anticipated. © Itish Water

Von-Irish Water owned)

"Gas Networks ireland (GNI), their affliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distibution and transmission metwork ("the information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect, special, incloratial, punitive ar consequential loss including, without limitation, direct, indirect, special, indiomation (including maps or consequential loss including, without limitation, direct, indirect, special, dig@gasnetworks.ie – The actual position of the gas/lecticity distribution and transmission network must be writted on site before any mechanical excavating blee place. If any mechanical excavation is proposed, hard cory maps must be requested from UNE NI the current edition of NI te gas. All work in the vicinity of the past distribution and transmission network must be completed in accordance with the current edition of NI te gas. All work in the vicinity of the past distribution and transmission network for a consideration accordance with the current edition of NI te gas. Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (Practice For Avoiding Danger Form Underground Services' which is available from the Health and Safety Authority (Practice For Avoiding Danger Form Underground Services' which is available from the Health and Safety Authority (Practice For Avoiding Danger Form Underground Services' which is available from the Health and Safety Authority (Practice For Avoiding Danger Form Underground Services' which is available from the Health and Safety Authority

rks to ensure the exact location of the network is identified prior to EIREANN : IRISH	carried out. Service pipes are not generally shown but their WATER ated. © Irish Water		VI), their affiliates and assigns, accept no responsibility for any information contained in	location and technical designation of the gas distribution and transmission network ("the stations and warranties express or implied, are excluded to the fullest extent permitted by	accepted for any loss or damage including, without limitation, direct, indirect, special,	eequeriual loss including loss of profits, arising out of or in connection with the use of the is or mapping data). NOTE: DIAL BEFORE YOU DIG Phone 1850 427 747 or e-mail	e actual position of the gas/electricity distribution and transmission network must be mechanical excavating takes place. If any mechanical excavation is proposed, hard copy	from GNI re gas. All work in the vicinity of the gas distribution and transmission network ordance with the current edition of the Health & Safety Authority publication. 'Code of	ger From Underground Services' which is available from the Health and Safety Authority townloaded free of charge at www.hsa.ie.*	
parties carrying out the wu	mechanical works being presence should be anticit		"Gas Networks Ireland (G	this document concerning Information"). Any represe	law. No liability shall be	Information (including ma	dig@gasnetworks.ie - TI verified on site before any	maps must be requested must be completed in ac	Practice For Avoiding Dar (1890 28 93 89) or can be	
	r Gravity Mains (Non-Irish Water owned)	Combined	Foul	Overflow	Unknown					
	Sewer	ł	ł	ł	ł					
	Storm Culverts	Storm Clean Outs	Sewer Gravity Mains (Irish Water owned)	Combined	Foul	- Overflow	Unknown			
	Storm Fittings	Vent/Col	*141 Other, Unknown	Storm Discharge Points		Overflow	Soakaway	arture Other; Unknown		
	😽 Lamphole	Standard	other; Unknown	storm Inlets	Gully Gully	 Standard 	Other; Unknown			
Legend	Stormwater Gravity Mains (Irish Water Owned)		Stormwater Gravity Mains (Non-Irish Water Owned)	Surface	Storm Manholes	Cascade	Catchpit	Hatchbox		

ÉIREANN : IRISH ()

S

Щ

Other, Unknown

1

Cascade

Pump station

4

Standard Outlet

Other: Unknowr

W Other: Unkno Soakaway

Other, Unkno

Appendix M – Site Investigation Reports

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

Ground Investigations Ireland

St Teres'a Lands Temple Hill, Monkstown, Blackrock, Co Dublin

Ground Investigation Report

DOCUMENT CONTROL SHEET

Project Title	St Teresa'sLands Temple Hill, Monkstown, blackrock, Co Dublin
Engineer	JJ Campbell & Associates
Project No	7405-01-18
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date	
0	Draft	J Cashen	A McDonnell	A McDonnell	Dublin	22 February 2018	

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

CONTENTS

1.0	Preamble	3
2.0	Overview	3
2.1.	Background	3
2.2.	Purpose and Scope	3
3.0	Subsurface Exploration	3
3.1.	General	3
3.2.	Soakaway Testing	3
4.0	Ground Conditions	4
4.1.	General	4
4.2.	Groundwater	4
5.0	Recommendations & Conclusions	5
5.1.	General	5
5.2.	Soakaway Design	5

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Soakaway Testing Records
Appendix 3	Soakaway Testing Photographs
1.0 Preamble

On the instructions of JJ Campbell & Associates, a site investigation was carried out by Ground Investigations Ireland Ltd., in February 2018 at the site of the proposed residential development at St Teresa's Lands, Monkstown, Blackrock, Co Dublin.

2.0 Overview

2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. The site is currently occupied by a convent and is situated in Blackrock, Co. Dublin. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 13 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the

soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 2, with associated photographs in Appendix 3 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Topsoil
- Made Ground or Cohesive Deposits

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.20m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil in DS01A and SS01. These deposits were described generally as *brown slightly gravelly sandy CLAY with occasional cobbles and contained occasional polished stone, bricks, concrete, lean mix and plastic fragments.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Topsoil in the majority of exploratory holes and were described typically as *brown slightly sandy slightly gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth. These deposits had some, occasional or many cobble and boulder content where noted on the exploratory hole logs.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Soakaway Design

Deep Soakaway Locations:

Infiltration rates of 2.903×10^{-6} and 2.506×10^{-6} m/s respectively were calculated for the soakaway locations DS01 and DS06. At the locations of DS02, DS03, DS04 and DS05, the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore unsuitable for soakaway design and construction.

Shallow Soakaway Locations:

Infiltration rates of 1.675×10^{-5} , 1.042×10^{-5} , 1.119×10^{-5} , 1.824×10^{-5} , and 5.290×10^{-6} m/s respectively were calculated for the soakaway locations SS01, SS03, SS04, SS05, and SS07. At the locations of SS02 and SS06, the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore unsuitable for soakaway design and construction.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

Temple Hill Road Blackrock

SS04

DS01

DS01A

SS05

DS02

DS06 SS03

DS05

SS07

SS01

S\$02

DS03

DS04

100 m

SS06

© 2018 Google

Google Earth

教育

APPENDIX 2 – Soakaway Testing Records

	Grou	nd In	vestigatic www.gii.	ons Ire	land	Ltd	Site Temple Hill Road Blackroo	k	Trial P Numb DS0	Pit Jer 1
Machine : J Method : T	CB 3CX rial Pit	Dimensi 1.80m X	ons (0.40m X 0.90m		Ground	Level (mOD)	Client		Job Numb 7405-01	• er 1-18
		Location	n		Dates 07	/02/2018	Engineer JJ Campbell & Associates		Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
Plan							Brown slightly sandy slight rootlets Soft to firm brown slightly occasional subangular col Obstruction: presumed g Complete at 0.90m	ly gravelly TOPSOIL with grassandy slightly gravelly CLAY obles and boulders	ass with	
							No groundwater encountere Trial pit stable Soakaway test carried out ir	d i pit		
							Trial pit backfilled on comple	tion of test		
						. s	Scale (approx)	Logged By	Figure No.	
							1:25	JC	7405-01-18.DS	S01

	Gı	round In	vestigatic	ons Irel	and	Ltd	Site Temple Hill Road Blackroo	k	 [Trial Pit Number DS01A
Machine : J	CB 3CX rial Pit	Dimens 1.80m	ions X 0.40m X 1.40m		Ground	Level (mOD)	Client		i 74	Job Number 405-01-18
		Locatio	n		Dates 07	/02/2018	Engineer JJ Campbell & Associates		:	Sheet 1/1
Depth (m)	Sample / Te	ests Water Depth (m)	Field Rec	ords	Level (mOD)	Depth (m) (Thickness)	D	escription	L	Kater Vater
Plan .			medium ingress(1.30m.	1) at			Brown slightly sandy slight rootlets MADE GROUND: Dark br with occasional subangula and plastic Complete at 1.40m	lty gravelly TOPSOIL with gr own slightly gravelly sandy (r cobbles, polished stone, b	ass CLAY ricks	
				•			Unable to carry out soakawa Trial pit backfilled on comple	ay test due to groundwater tion		
				-		•				
· ·	•	· ·	· ·		 					
							Scale (approx) 1:25	Logged By JC	Figure N 7405-01-	No. •18.DS01A

	Grou	nd Inv	vestigatio www.gii	ons Ire .ie	land	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number DS02
Machine : J	CB 3CX rial Pit	Dimensi 1.70m X	ons (0.40m X 1.50m		Ground	Level (mOD)	Client		Job Number 7405-01-18
		Location	1		Dates 06	/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	D	escription	Kater Kater
0.50-1.50	в				(Thičkńess) (Thičkńess) (0.20) (0.20) (0.65) (0.65) (0.65) (0.85)		Brown slightly sandy slight rootlets Firm brown slightly sandy	tly gravelly TOPSOIL with gr	
							Stiff light brown slightly gra subangular to subrounded	avelly sandy CLAY with som cobbles and boulders	
Plan							Complete at 1.50m		
			· ·	•	· ·		No groundwater encountere Trial pit stable Soakaway test carried out ir	d pit	
							Trial pit backfilled on comple	tion of test	
 	· ·		· ·		· · · ·				
							Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.DS02

	Grou	nd In	vestigat www.g	ions Ire ii.ie	land	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number DS03
Machine : Jo Method : T	CB 3CX rial Pit	Dimensi 2.00m X	ions K 0.35m X 1.50	m	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Location	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	lecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safet
						(0.20) 0.20 (0.20)	Brown slightly sandy slight rootlets Firm brown slightly sandy occasional subangular to s roots	ly gravelly TOPSOIL with grassing the set of the subrounded cobbles and trees and tree	$\begin{array}{c} \text{ass} \\ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
1.00	В					1.00 (0.50)	Stiff brown slightly sandy s occasional subangular to s	slightly gravelly CLAY with subrounded cobbles and bo	
Plan							Complete at 1.50m		
		·			• •	'	No groundwater encountere Trial pit stable	d	
							Soakaway test carried out ir Trial pit backfilled on comple	i pit ition of test	
· ·									
· ·	· ·		· ·		• •	· ·			
						· · · •	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.DS03

GROUND IRELAND	Grou	nd Inv	vestigati www.gi	ons Ire i.ie	land	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number DS04
Machine:J Method :T	CB 3CX rial Pit	Dimensi 1.90m X	ons (0.35m X 1.50m	I	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatior	1		Dates 07	7/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
						(0.10) - 0.10 	Brown slightly sandy slight rootlets Firm to stiff brown slightly tree roots	tly gravelly TOPSOIL with grass	ass with
						1.05 (0.45)	Stiff brown slightly sandy s occasional subangular to s	slightly gravelly CLAY with subrounded cobbles and bou	
Plan .							Complete at 1.50m		
							No groundwater encountere Trial pit stable Soakaway test carried out ir	d 1 pit	
							Trial pit backfilled on comple	tion of test	
· ·	· ·		· ·		· ·	 			
		· · · · ·			• •	· · ·	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.DS04

	Grou	nd In	vestigati www.gi	ons Ire i.ie	land	Ltd	Site Temple Hill Road Blackrock		Trial Pit Number DS05
Machine : J Method : T	CB 3CX rial Pit	Dimens 1.80m 2	ions X 0.40m X 1.50n	1	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatio	n		Dates 06	/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
						(0.20) (0.20) (0.20) (1.30) (1.30) (1.30) (1.30) (1.50) (1.50)	Brown slightly sandy slight rootlets Firm to stiff brown slightly occasional subangular to s	ly gravelly TOPSOIL with grass	ass with $\frac{a}{b}$, $\frac{b}{b}$, $\frac{b}{b}$, $\frac{a}{b}$, $\frac{b}{b}$,
Plan .					•	· · · '	No groundwater encountere Trial pit stable	d	
· ·						•	Soakaway test carried out ir Trial pit backfilled on comple	i pit ition of test	
· ·	· ·	•			· · ·				
							Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.DS05

	Grou	ind Inv	vestigatio www.gii.	ns Irel	and	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number DS06
Machine:J Method:T	CB 3CX irial Pit	Dimensi 1.80m X	ons (0.40m X 1.50m		Ground	Level (mOD) Client		Job Number 7405-01-18
		Location	I		Dates 07	/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords	Level (mOD)	Depth (m) (Thickness	D	escription	Legend S
						- (0.10) - 0.10 	Brown slightly sandy slight rootlets Firm to stiff brown slightly occasional subangular to s	ly gravelly TOPSOIL with gr sandy slightly gravelly CLAY subrounded cobbles and tree	ass
						 (0.90) 	roots		00000000000000000000000000000000000000
					1.00 (0.50)	Stiff brown slightly sandy s occasional subangular to s	lightly gravelly CLAY with subrounded cobbles	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
						1.50	Complete at 1.50m		<u>, , , , , , , , , , , , , , , , , , , </u>
						- 			
						- - - - - - - -			
Plan .						•	Remarks No groundwater encountere Trial pit stable	d	
						•	Soakaway test carried out ir Trial pit backfilled on comple	i pit tion of test	
						•			
· ·	· ·	•	· ·		· ·	•			
							Scale (approx)	Logged By	Figure No.
		· · · · · ·				1:25	JC	7405-01-18.DS06	

	Grou	nd Inv	vestigat www.g	ions Ire ^{ii.ie}	land	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number SS01	t r 1
Machine : J Method : T	CB 3CX rial Pit	Dimensi 1.10m X	ons (0.40m X 0.50r	n	Ground	Level (mOD)	Client		Job Number 7405-01-	• r -18
		Locatior	1		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field R	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
						(0.10) 0.10 (0.20) 0.30 (0.20) 0.30	Brown slightly sandy slight rootlets MADE GROUND: Brown s CLAY with occasional sub mortar fragments and stor MADE GROUND: Brown of	tly gravelly TOPSOIL with gr slightly sandy slightly gravell angular cobbles, with nails, le blocks	y	
0.50 .50	В			·			MADE GROUND: Brown of SAND with occasional sub concrete and mortar fragm Complete at 0.50m	clayey gravelly fine to coarso angular cobbles, with lean nents		
							No groundwater encountere Trial pit stable Soakaway test carried out in Trial pit backfilled on comple	d 1 pit 1 pit		
 	· ·		· ·			· ·				
			· · · ·				Scale (approx)	Logged By	Figure No.	
							1:25	JC	7405-01-18.SSC	01

	Grou	nd In	vestiga www.	tions Ire _{gii.ie}	land	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number SS02
Machine : Jo Method : Tr	CB 3CX rial Pit	Dimens 1.20m	ions X 0.40m X 0.5	0m	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatio	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
						(0.10) 0.10 (0.40)	Brown slightly sandy slight rootlets Firm brown slightly sandy occasional subangular cot	tly gravelly TOPSOIL with gravelly CLAY with gravelly CLAY with bbles (possibly Made Ground	rass $\left[\begin{array}{c} 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
0.50 Plan .	в	-		·		0.50	Complete at 0.50m	d	
						•••	Trial pit stable Soakaway test carried out ir Trial pit backfilled on comple	n pit etion of test	
					-	•••			
· ·	· ·				•	· · ·			
							Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.SS02

	Grou	nd In	vestigat www.g	ions Ire jii.ie	land	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number SS03
Machine : J	CB 3CX rial Pit	Dimens 1.20m 2	ions X 0.40m X 0.50	m	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatio	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
						(0.20) 0.20 (0.30)	Brown slightly sandy slight rootlets Firm brown slightly sandy	tly gravelly TOPSOIL with gravelly gravelly CLAY	rass
Plan .							Complete at 0.50m	4	
							No groundwater encountere Trial pit stable Soakaway test carried out ir Trial pit backfilled on comple	d pit stion of test	
· ·	· ·								
						· · - •	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.SS03

	Grou	nd In	vestigat www.g	ions Ire jii.ie	land	Ltd	Site Temple Hill Road Blackroo	ĸ	Trial Pit Number SS04
Machine : Jo Method : T	CB 3CX rial Pit	Dimens 1.30m	ions X 0.30m X 0.50	m	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatio	n		Dates 07	7/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field F	lecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
			(m)				Soft to firm brown slightly and slight slight soft to firm brown slightly and sligh	e at base of pit	
Plan .							Remarks No groundwater encountere	ŀd	
						•••	Soakaway test carried out in Trial pit backfilled on comple	n pit etion of test	
• •						•••			
· ·	· ·		 		· ·	· ·			
						· ·	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.SS04

GROUND IRELAND	Grou	nd In	vestigat www.g	ions Ire jii.ie	land	Ltd	Site Temple Hill Road Blackroo	ĸ	Trial Pit Number SS05	r 5
Machine : J	CB 3CX rial Pit	Dimensi 1.40m >	i ons K 0.35m X 0.50	m	Ground	Level (mOD)	Client		Job Number 7405-01-1	r 18
		Location	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field F	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
Plan .		- Certification of the second				(Thičkříess)	Brown slightly sandy slight rootlets Soft to firm brown slightly occasional subangular to s Complete at 0.50m	tly gravelly TOPSOIL with gra sandy slightly gravelly CLAY subrounded cobbles		
							Trial pit stable Soakaway test carried out in Trial pit backfilled on complete	n pit stion of test		
	 				· ·					
						· · - •	Scale (approx)	Logged By	Figure No.	
			· · · ·				1:25	JC	7405-01-18.SS0)5

	Grou	ound Investigations Ireland Ltd www.gii.ie				Site Temple Hill Road Blackrock			Trial Pit Number SS06	
Machine:J Method:T	CB 3CX rial Pit	Dimens 1.40m	ions X 0.40m X 0.50	m	Ground	Level (mOD)	Client		7	Job Number 405-01-18
		Locatio	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates			Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	L	Aater Kater
						(0.20) 0.20 (0.30) 0.50	Brown slightly sandy slight rootlets Firm brown slightly sandy Complete at 0.50m	ly gravelly TOPSOIL with gi	rass	
Plan .							Remarks			
							No groundwater encountere Trial pit stable Soakaway test carried out ir	d I pit		
							Trial pit backfilled on comple	tion of test		
					-					
				·	•	· · •	Scale (approx)	Logged By	Figure I	No.
							1:25	JC	7405-01	-18.SS06

	Grou	round Investigations Ireland Ltd www.gii.ie				Ltd	Site Trial Pi Temple Hill Road Blackrock SS0'		
Machine : J Method : T	CB 3CX rial Pit	Dimens 1.30m 2	ions X 0.35m X 0.50r	n	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatio	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
						(0.20) 0.20 (0.30)	Brown slightly sandy slight rootlets Firm brown slightly sandy	tly gravelly TOPSOIL with gravelly gravelly CLAY	rass
Plan .							Complete at 0.50m		
							No groundwater encountere Trial pit stable Soakaway test carried out ir Trial pit backfilled on comple	d 1 pit tion of test	
 	· ·		· ·		· ·	· ·			
						· · ·	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.SS07

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.40m x 0.90m (L x W x D)

Date	Time	Wate (m	er level bgl)		
07/02/2018	0	0.000			
07/02/2018	1	-0.030			
07/02/2018	2	-0.050			
07/02/2018	48	-0.150			
07/02/2018	111	-0.230			
07/02/2018	171	-0.270			
07/02/2018	244	-0.330			
07/02/2018	302	-0.400			
07/02/2018	800	-0.675	*Data Extra	apolated	
Start depth 0.00	Depth of Pit 0.900		Diff 0.900	75% full 0.225	25%full 0.675
Length of pit (m) 1.800	Width of pit (m) 0.400			75-25Ht (m) 0.450	Vp75-25 (m3) 0.32
Tp75-25 (from graph) (s)		41340		50% Eff Depth	ap50 (m2) 2 7
f =	2.903E-06	m/s		0.100	2.1

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.70m x 0.40m 1.50m (L x W x D)

Date	Time	Water (m b	level ogl)		
06/02/2018	0	-0.500			
06/02/2018	30	-0.580			
06/02/2018	91	-0.630			
06/02/2018	139	-0.670			
06/02/2018	172	-0.700			
06/02/2018	222	-0.720			
06/02/2018	266	-0.740			
06/02/2018	345	-0.770			
		*Soakaway	failed - Pit	backfilled	
Start depth	Depth of Pit		Diff	75% full	25%full
0.50	1.500		1.000	0.75	1.25

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.00m x 0.35m 1.50m (L x W x D)

Date	Time	Water (m I	' level ogl)		
06/02/2018	0	-0.500			
06/02/2018	1	-0.500			
06/02/2018	4	-0.510			
06/02/2018	15	-0.540			
06/02/2018	74	-0.640			
06/02/2018	182	-0.720			
06/02/2018	265	-0.750			
06/02/2018	333	-0.770			
		*Soakaway	failed - Pit	backfilled	
Start depth	Depth of Pit		Diff	75% full	25%full
0.00	0.500		0.500	0.125	0.375

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.90m x 0.35m 1.50m (L x W x D)

Date	Time	Water level (m bgl)	
07/02/2018	0	-0.500	
07/02/2018	15	-0.510	
07/02/2018	70	-0.540	
07/02/2018	126	-0.580	
07/02/2018	202	-0.610	
07/02/2018	267	-0.640	
07/02/2018	335	-0.670	
		*Sockoway failed -	Pit backfilled

[°] Soakaway falled - Pit backfilled					
Start depth	Depth of Pit	Diff	75% full	25%full	
0.50	1.500	1.000	0.75	1.25	

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.40m 1.50m (L x W x D)

Date	Time	Water (m I	^r level ogl)		
06/02/2018	0	-0.500			
06/02/2018	1	-0.500			
06/02/2018	15	-0.510			
06/02/2018	61	-0.520			
06/02/2018	123	-0.550			
06/02/2018	201	-0.560			
06/02/2018	253	-0.570			
06/02/2018	323	-0.590			
		*Soakaway	failed - Pit	backfilled	
Start depth	Depth of Pit		Diff	75% full	25%full
0.50	1.500		1.000	0.75	1.25

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.40m x 1.50m (L x W x D)

Date	Time	Wate (m	er level bgl)		
07/02/2018	0	-0.500			
07/02/2018	28	-0.650			
07/02/2018	92	-0.770			
07/02/2018	150	-0.850			
07/02/2018	225	-0.910			
07/02/2018	292	-0.950			
07/02/2018	357	-0.980			
07/02/2018	900	-1.250	*Data Extra	apolated	
Start depth 0.50	Depth of Pit		Diff 1.000	75% full 0.75	25%full 1.25
Length of pit (m) 1.800	Width of pit (m) 0.400			75-25Ht (m) 0.500	Vp75-25 (m3) 0.36
Tp75-25 (from g	raph) (s)	49200		50% Eff Depth 0.500	ap50 (m2) 2.92
f =	2.506E-06	m/s			-

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.10m x 0.40m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
06/02/2018	0	0.000
06/02/2018	2	-0.030
06/02/2018	38	-0.170
06/02/2018	100	-0.350
06/02/2018	150	-0.450
06/02/2018	180	-0.500

Start depth 0.00	Depth of Pit 0.500		Diff 0.500	75% full 0.125	25%full 0.375
Length of pit (m) 1.100) Width of pit (m) 0.400			75-25Ht (m) 0.250	Vp75-25 (m3) 0.11
Tp75-25 (from g	5520		50% Eff Depth	ap50 (m2)	
f =	1.675E-05	m/s		0.200	1.19

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.20m x 0.40m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
06/02/2018	0	0.000
06/02/2018	15	-0.050
06/02/2018	70	-0.100
06/02/2018	128	-0.140
06/02/2018	265	-0.150
06/02/2018	321	-0.150

		*Soakaway failed - Pit backfilled		
Start depth	Depth of Pit	Diff	75% full	25%full
0.00	0.500	0.500	0.125	0.375

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.20m x 0.40m 0.50m (L x W x D)

Date	Time	Wate (m	r level bgl)		
06/02/2018	0	0.000			
06/02/2018	10	-0.050			
06/02/2018	18	-0.150			
06/02/2018	47	-0.230			
06/02/2018	110	-0.300			
06/02/2018	189	-0.390			
06/02/2018	240	-0.450			
06/02/2018	380	-0.500			
Start depth 0.00	Depth of Pit 0.500		Diff 0.500	75% full 0.125	25%full 0.375
Length of pit (m) 1.200	Width of pit (m) 0.400			75-25Ht (m) 0.250	Vp75-25 (m3) 0.12
Tp75-25 (from g	raph) (s)	9000		50% Eff Depth 0.250	ap50 (m2) 1.28
f =	1.042E-05	m/s			

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.30m x 0.30m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
07/02/2018	0	0.000
07/02/2018	1	-0.020
07/02/2018	32	-0.140
07/02/2018	66	-0.230
07/02/2018	129	-0.340
07/02/2018	209	-0.500

Start depth 0.00	Depth of Pit 0.500		Diff 0.500	75% full 0.125	25%full 0.375
Length of pit (m) 1.300) Width of pit (m) 0.300			75-25Ht (m) 0.250	Vp75-25 (m3) 0.10
Tp75-25 (from graph) (s)		7320		50% Eff Depth 0.250	ap50 (m2) 1.19
f =	1.119E-05	m/s			

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.40m x 0.35m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
06/02/2018	0	0.000
06/02/2018	10	-0.050
06/02/2018	39	-0.200
06/02/2018	100	-0.360
06/02/2018	148	-0.430
06/02/2018	200	-0.500

Start depth	Depth of Pit		Diff	75% full	25%full
0.00	0.500		0.500	0.125	0.375
Length of pit (m) Width of pit (m)			75-25Ht (m)	Vp75-25 (m3)	
1.400 0.350			0.250	0.12	
Tp75-25 (from graph) (s)		4920		50% Eff Depth	ap50 (m2)
f =	1.824E-05	m/s		0.200	1.305

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.40m x 0.40m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
06/02/2018	0	0.000
06/02/2018	5	0.000
06/02/2018	70	-0.020
06/02/2018	128	-0.120
06/02/2018	265	-0.130
06/02/2018	321	-0.140

		*Soakaway failed - Pi	it backfilled	
Start depth	Depth of Pit	Diff	75% full	25%full
0.00	0.500	0.500	0.125	0.375

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.30m x 0.35m 0.50m (L x W x D)

Date	Time	Wate (m	er level ı bgl)
06/02/2018	0	0.000	
06/02/2018	10	-0.080	
06/02/2018	24	-0.120	
06/02/2018	82	-0.210	
06/02/2018	188	-0.300	
06/02/2018	272	-0.360	
06/02/2018	600	-0.500	*Data Extrapolated

Start depth 0.00	Depth of Pit 0.500		Diff 0.500	75% full 0.125	25%full 0.375
Length of pit (m) 1.300) Width of pit (m) 0.350			75-25Ht (m) 0.250	Vp75-25 (m3) 0.11
Tp75-25 (from graph) (s)		16800		50% Eff Depth	ap50 (m2)
f =	5.290E-06	m/s		0.200	1.20

APPENDIX 3 – Soakaway Testing Photographs

Temple Hill Road Blackrock Soakaway Testing Photographs

DS01A

DS01A

SS03

SS07

	Grou	nd In	vestigatio www.gii	ons Irel .ie	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number DS01	
Machine : J Method : T	CB 3CX rial Pit	Dimensi 1.80m X	ons (0.40m X 0.90m		Ground	Level (mOD)	Client		Job Number 7405-01-1
		Location	1		Dates 07	/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Red	cords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
Plan							Brown slightly sandy slight rootlets Soft to firm brown slightly occasional subangular col Obstruction: presumed g Complete at 0.90m	ly gravelly TOPSOIL with grassandy slightly gravelly CLAY obles and boulders	ass with
							No groundwater encountere Trial pit stable Soakaway test carried out ir	d pit	
							Trial pit backfilled on comple	tion of test	
							Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.DS01

	G	round	Inve	stigati www.gi	ons Ire i.ie	Ltd	Site Temple Hill Road Blackroo	k		Trial Pit Number DS01A		
Machine : J Method : T	CB 3CX rial Pit	Dim 1.8	ensions 0m X 0.4	s 40m X 1.40n	n	Ground	Level (mOD)	Client		7	Job Number 7405-01-1	18
		Loc	ation			Dates 07	/02/2018	Engineer JJ Campbell & Associates			Sheet 1/1	
Depth (m)	Sample / T	ests Dej (m	ter oth I)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	L	Legend	Water
Plan .			me 1.3	dium ingress 0m.	s(1) at			Brown slightly sandy slight rootlets MADE GROUND: Dark br with occasional subangula and plastic Complete at 1.40m	lty gravelly TOPSOIL with gr own slightly gravelly sandy (r cobbles, polished stone, b	ass CLAY ricks		21
								Unable to carry out soakawa Trial pit backfilled on comple	ay test due to groundwater tion			
 		· ·		•	•	· ·						
								Scale (approx) 1:25	Logged By JC	Figure 7405-01	No. I-18.DS01	

	Grou	nd Inv	estigatio www.gii	ons Ire .ie	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number DS02	
Machine:J Method:T	CB 3CX rial Pit	Dimensi 1.70m X	ons 0.40m X 1.50m		Ground	Level (mOD)	Client		Job Number 7405-01-18
		Location	I		Dates 06	/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Red	cords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
0.50-1.50	в					(0.20) 0.20 (0.65)	Brown slightly sandy slight rootlets Firm brown slightly sandy	tly gravelly TOPSOIL with gr	
						- 0.85 - 0.85 - (0.65)	Stiff light brown slightly gra subangular to subrounded	avelly sandy CLAY with som cobbles and boulders	e
Plan							Complete at 1.50m		
	· ·		· ·	•	· ·		No groundwater encountere Trial pit stable Soakaway test carried out in	d pit	
							i riai pit backfilled on comple	erion of test	
 	· ·		· ·		 				
						. s	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.DS02

	Grou	nd Inv	vestigat www.g	ions Ire ^{ii.ie}	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number DS03	
Machine:J Method:T	CB 3CX rial Pit	Dimensi 2.00m X	ons (0.35m X 1.50r	n	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatior	1		Dates 06	/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Sater
						(0.20) 0.20 (0.20)	Brown slightly sandy slight rootlets Firm brown slightly sandy occasional subangular to s roots	tly gravelly TOPSOIL with gra slightly gravelly CLAY with subrounded cobbles and tree	
1.00	В					1.00 (0.50) 1.50	Stiff brown slightly sandy s occasional subangular to s	slightly gravelly CLAY with subrounded cobbles and bou	
Plan							Complete at 1.50m		
				•		•	No groundwater encountere Trial pit stable	d 	
· ·						•	Soakaway test carried out in Trial pit backfilled on comple	n pit stion of test	
· ·						•			
· ·	· ·		· ·			•			
				•		. 5	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.DS03

	Grou	nd In	vestigati www.g	ions Ire ^{ii.ie}	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number DS04	
Machine:J Method :T	CB 3CX rial Pit	Dimensi 1.90m X	i ons (0.35m X 1.50r	n	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Location	n		Dates 07	/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
						(0.10) 	Brown slightly sandy slight rootlets Firm to stiff brown slightly tree roots	tly gravelly TOPSOIL with grass	ass with $\frac{1}{10}$
						1.05 (0.45) 1.50	Stiff brown slightly sandy s occasional subangular to s	slightly gravelly CLAY with subrounded cobbles and bou	
Plan							Complete at 1.50m		
							No groundwater encountere Trial pit stable Soakaway test carried out in Trial pit backfilled on comple	d n pit tion of test	
· ·	· ·	•	· ·		• •	· ·			
· ·	· ·	•	· ·		• •		Scale (approx)	Logged By	Figure No.
							1:25	JC	1405-01-18.DS04

	Grou	nd In	vestigati www.gi	ons Ire i.ie	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number DS05	
Machine : J Method : T	CB 3CX rial Pit	Dimens 1.80m 2	ions X 0.40m X 1.50m	1	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatio	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
						(0.20) 0.20 (1.30) 1.50	Brown slightly sandy slight rootlets Firm to stiff brown slightly occasional subangular to s	ly gravelly TOPSOIL with grassandy slightly gravelly CLAY subrounded cobbles	ass with $\frac{1}{6}$,
Plan .				·		'	Remarks No groundwater encountere Trial pit stable	d	
							Soakaway test carried out ir Trial pit backfilled on comple	i pit tion of test	
						· ·			
· ·	· ·	•	· ·		· ·	· · ·			
						<mark>.</mark>	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.DS05

	Gro	und In	vestigatic www.gii.	ons Irel	Site Temple Hill Road Blackroo	k	Trial Pit Number DS06		
Machine:J Method:T	CB 3CX īrial Pit	Dimensi 1.80m X	ons (0.40m X 1.50m		Ground	Level (mOD)	Client		Job Number 7405-01-18
		Location	1		Dates 07	/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
						- (0.10) - 0.10 	Brown slightly sandy slight rootlets Firm to stiff brown slightly occasional subangular to s roots	ly gravelly TOPSOIL with gra sandy slightly gravelly CLAY subrounded cobbles and tree	ass with with of a state of a sta
						- 1.00 - (0.50)	Stiff brown slightly sandy soccasional subangular to s	ilightly gravelly CLAY with subrounded cobbles	0 0 0 0 0 0 0 0 0 0 0 0 0 0
							Complete at 1.50m		
Plan .					•	•	Remarks No groundwater encountere Trial pit stable	d	
		·				•	Soakaway test carried out ir Trial pit backfilled on comple	pit tion of test	
· · ·		·				•			
· ·	· ·		· ·	· ·	•				
					· ·		Scale (approx) 1:25	Logged By JC	Figure No. 7405-01-18.DS06

	Grou	nd In	vestiga www.	tions Ire gii.ie	Ltd	Site Temple Hill Road Blackroo	k	Ti N	rial Pit lumber SS01	
Machine:J Method:T	CB 3CX rial Pit	Dimensi 1.10m X	i ons (0.40m X 0.5	0m	Ground	Level (mOD)	Client		Ja N 740	ob I umber 05-01-18
		Location	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		S	heet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Le	Kater Kater
						(0.10) 0.10 (0.20)	Brown slightly sandy sligh rootlets MADE GROUND: Brown s	tly gravelly TOPSOIL with gr	rass ly	
0.50	В					- 0.30 - (0.20) - 0.50	MADE GROUND: Brown of SAND with occasional sub	angular cobbles, with hails, le blocks clayey gravelly fine to coarse angular cobbles, with lean i	e mix,	
0.50 Plan . 	В		· ·	·			Remarks No groundwater encounterer Trial pit stable Soakaway test carried out ir Trial pit backfilled on complete	d pit tion of test		
						· · •	Scale (approx)	Logged By	Figure No	D .
							1:25	JC	7405-01-1	18.SS01

	Grou	nd In	vestiga www.g	tions Ire gii.ie	Ltd	Site Temple Hill Road Blackroo	k	Trial Pit Number SS02	
Machine : Jo Method : Tr	CB 3CX rial Pit	Dimens 1.20m	ions X 0.40m X 0.5	Эm	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatio	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
						(0.10) 0.10 - 0.10 - (0.40)	Brown slightly sandy slight rootlets Firm brown slightly sandy occasional subangular col	tly gravelly TOPSOIL with gravelly CLAY with gravelly CLAY with obles (possibly Made Groun	rass $(0, \frac{1}{10^{\circ}}, \frac{1}{20^{\circ}}, \frac{1}{$
0.50	В					0.50	Complete at 0.50m		<u>, 6, 6, 6</u> , <u>6, 7</u> , <u>7, <u>7, 7</u>, <u>7, <u>7, 7</u>, <u></u></u></u>
Plan							Remarks		
Plan .		•			•		Remarks No groundwater encountere	d	
					-		Soakaway test carried out in Trial pit backfilled on comple	n pit tion of test	
					-				
· ·	· ·			•		· · ·			
					•	· · ·	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.SS02

	Grou	nd In	vestigat www.g	ions Ire ^{ii.ie}	Ltd	Site Trial Pit Temple Hill Road Blackrock SS03			
Machine : J Method : T	CB 3CX rial Pit	Dimens 1.20m 2	ions X 0.40m X 0.50	m	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatio	n		Dates 06	6/02/2018	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
						(0.20) 0.20 (0.30)	Brown slightly sandy slight rootlets Firm brown slightly sandy	tly gravelly TOPSOIL with gravelly gravelly CLAY	rass
Plan .				·			Complete at 0.50m		
					-		No groundwater encounterer Trial pit stable Soakaway test carried out in Trial pit backfilled on completer	d 1 pit tion of test	
 	· ·	•	· · ·		•	· ·			
· ·					-		Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.SS03
	Ground Investigations Ireland Ltd					Site Temple Hill Road Blackroo	k	Trial Pit Number SS04	
---------------------------	-----------------------------------	-----------------------	-------------------------------	---------	---------------------	-----------------------------------	--	--	--
Machine : J Method : T	CB 3CX rial Pit	Dimens 1.30m 2	ions X 0.30m X 0.50	m	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Locatio	n		Dates 07/02/2018		Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	lecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
						(0.20) 0.20 (0.30) 0.50	Brown slightly sandy slight rootlets Soft to firm brown slightly s Large boulders of granite Complete at 0.50m	ly gravelly TOPSOIL with grandy slightly gravelly CLAN	ass • • • • • • • • • • • • • • • • • • •
Plan .	· · ·			·			Remarks	d	
							No groundwater encounterer Trial pit stable Soakaway test carried out in Trial pit backfilled on completer	d pit stion of test	
 	· ·	•	· ·		• •	 			
						· · ·	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.SS04

GROUND IRELAND	Ground Investigations Ireland Ltd						Site Temple Hill Road Blackroo	k	Trial Pit Number SS05
Machine : J Method : T	CB 3CX rial Pit	Dimensi 1.40m X	ions K 0.35m X 0.5	0m	Ground	Level (mOD)	Client		Job Number 7405-01-18
		Location	n		Dates 06/02/2018		Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
Plan		- Centuri (m)		·		(Thičkříess)	Brown slightly sandy sligh rootlets Soft to firm brown slightly occasional subangular to Complete at 0.50m	tly gravelly TOPSOIL with grassandy slightly gravelly CLAY subrounded cobbles	Logenia S ass .0 .0 .0 .0
							No groundwater encounterer Trial pit stable Soakaway test carried out in Trial pit backfilled on completer	d 1 pit tion of test	
· ·	· ·	•			· ·				
				·		· · · •	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.SS05

	Ground Investigations Ireland Ltd					Site Temple Hill Road Blackroo	k	Trial Pit Number SS06	
Machine : J Method : T	CB 3CX rial Pit	Dimens 1.40m	ions X 0.40m X 0.50i	n	Ground Level (mOD)		Client		Job Number 7405-01-18
		Locatio	n		Dates 06/02/2018		Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field R	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
						(0.20) 0.20 (0.30)	Brown slightly sandy sligh rootlets Firm brown slightly sandy	tly gravelly TOPSOIL with gravelly gravelly CLAY	rass
Plan .		-		·		0.50	Complete at 0.50m	d	
		•					Trial pit stable Soakaway test carried out ir Trial pit backfilled on comple	n pit etion of test	
· ·	· ·	•	· ·		• •				
						· · ·	Scale (approx)	Logged By	Figure No.
							1:25	JC	7405-01-18.SS06

GROUND IRELAND	Ground Investigations Ireland Ltd						Site Temple Hill Road Blackroo	sk	Trial Pit Number SS07	í r r
Machine : J	CB 3CX rial Pit	Dimensi 1.30m >	i ons K 0.35m X 0.50)m	Ground	Level (mOD)	Client		Job Number 7405-01-	r 18
		Location	n		Dates 06/02/2018		Engineer JJ Campbell & Associates		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field I	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
						(0.20) 0.20 (0.30)	Brown slightly sandy slight rootlets Firm brown slightly sandy	tly gravelly TOPSOIL with grain and the strength of the streng	rass	
Plan .							Complete at 0.50m Complete at 0.50m Remarks No groundwater encountere Trial pit stable Soakaway test carried out in Trial pit backfilled on complete	rd n pit ttion of test		
	· ·		• •	•						
							Scale (approx)	Logged By	Figure No.	
							-			

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.40m x 0.90m (L x W x D)

Date	Time	Wate (m	er level bgl)		
07/02/2018	0	0.000			
07/02/2018	1	-0.030			
07/02/2018	2	-0.050			
07/02/2018	48	-0.150			
07/02/2018	111	-0.230			
07/02/2018	171	-0.270			
07/02/2018	244	-0.330			
07/02/2018	302	-0.400			
07/02/2018	800	-0.675	*Data Extra	apolated	
Start depth 0.00	Depth of Pit 0.900		Diff 0.900	75% full 0.225	25%full 0.675
Length of pit (m) 1.800	Width of pit (m) 0.400			75-25Ht (m) 0.450	Vp75-25 (m3) 0.32
Tp75-25 (from graph) (s)		41340		50% Eff Depth	ap50 (m2) 2 7
f =	2.903E-06	m/s		0.100	2.1

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.70m x 0.40m 1.50m (L x W x D)

Date	Time	Water (m b	level ogl)		
06/02/2018	0	-0.500			
06/02/2018	30	-0.580			
06/02/2018	91	-0.630			
06/02/2018	139	-0.670			
06/02/2018	172	-0.700			
06/02/2018	222	-0.720			
06/02/2018	266	-0.740			
06/02/2018	345	-0.770			
		*Soakaway	failed - Pit	backfilled	
Start depth	Depth of Pit		Diff	75% full	25%full
0.50	1.500		1.000	0.75	1.25

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.00m x 0.35m 1.50m (L x W x D)

Date	Time	Water (m I	' level ogl)		
06/02/2018	0	-0.500			
06/02/2018	1	-0.500			
06/02/2018	4	-0.510			
06/02/2018	15	-0.540			
06/02/2018	74	-0.640			
06/02/2018	182	-0.720			
06/02/2018	265	-0.750			
06/02/2018	333	-0.770			
		*Soakaway	failed - Pit	backfilled	
Start depth	Depth of Pit		Diff	75% full	25%full
0.00	0.500		0.500	0.125	0.375

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.90m x 0.35m 1.50m (L x W x D)

Date	Time	Water level (m bgl)	
07/02/2018	0	-0.500	
07/02/2018	15	-0.510	
07/02/2018	70	-0.540	
07/02/2018	126	-0.580	
07/02/2018	202	-0.610	
07/02/2018	267	-0.640	
07/02/2018	335	-0.670	
		*Sockoway failed -	Pit backfilled

^Soakaway failed - Pit backfilled						
Start depth	Depth of Pit	Diff	75% full	25%full		
0.50	1.500	1.000	0.75	1.25		

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.40m 1.50m (L x W x D)

Date	Time	Water (m I	^r level ogl)		
06/02/2018	0	-0.500			
06/02/2018	1	-0.500			
06/02/2018	15	-0.510			
06/02/2018	61	-0.520			
06/02/2018	123	-0.550			
06/02/2018	201	-0.560			
06/02/2018	253	-0.570			
06/02/2018	323	-0.590			
		*Soakaway	failed - Pit	backfilled	
Start depth	Depth of Pit		Diff	75% full	25%full
0.50	1.500		1.000	0.75	1.25

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.40m x 1.50m (L x W x D)

Date	Time	Wate (m	er level bgl)		
07/02/2018	0	-0.500			
07/02/2018	28	-0.650			
07/02/2018	92	-0.770			
07/02/2018	150	-0.850			
07/02/2018	225	-0.910			
07/02/2018	292	-0.950			
07/02/2018	357	-0.980			
07/02/2018	900	-1.250	*Data Extra	apolated	
Start depth 0.50	Depth of Pit		Diff 1.000	75% full 0.75	25%full 1.25
Length of pit (m) 1.800	Width of pit (m) 0.400			75-25Ht (m) 0.500	Vp75-25 (m3) 0.36
Tp75-25 (from g	raph) (s)	49200		50% Eff Depth 0.500	ap50 (m2) 2.92
f =	2.506E-06	m/s			-

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.10m x 0.40m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
06/02/2018	0	0.000
06/02/2018	2	-0.030
06/02/2018	38	-0.170
06/02/2018	100	-0.350
06/02/2018	150	-0.450
06/02/2018	180	-0.500

Start depth 0.00	Depth of Pit 0.500		Diff 0.500	75% full 0.125	25%full 0.375
Length of pit (m) Width of pit (m) 1.100 0.400				75-25Ht (m) 0.250	Vp75-25 (m3) 0.11
Tp75-25 (from graph) (s)		5520		50% Eff Depth	ap50 (m2)
f =	1.675E-05	m/s		0.200	1.19

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.20m x 0.40m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
06/02/2018	0	0.000
06/02/2018	15	-0.050
06/02/2018	70	-0.100
06/02/2018	128	-0.140
06/02/2018	265	-0.150
06/02/2018	321	-0.150

		*Soakaway failed - P	t backfilled	
Start depth	Depth of Pit	Diff	75% full	25%full
0.00	0.500	0.500	0.125	0.375

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.20m x 0.40m 0.50m (L x W x D)

Date	Time	Wate (m	r level bgl)		
06/02/2018	0	0.000			
06/02/2018	10	-0.050			
06/02/2018	18	-0.150			
06/02/2018	47	-0.230			
06/02/2018	110	-0.300			
06/02/2018	189	-0.390			
06/02/2018	240	-0.450			
06/02/2018	380	-0.500			
Start depth 0.00	Depth of Pit 0.500		Diff 0.500	75% full 0.125	25%full 0.375
Length of pit (m) 1.200	Width of pit (m) 0.400			75-25Ht (m) 0.250	Vp75-25 (m3) 0.12
Tp75-25 (from g	raph) (s)	9000		50% Eff Depth 0.250	ap50 (m2) 1.28
f =	1.042E-05	m/s			

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.30m x 0.30m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
07/02/2018	0	0.000
07/02/2018	1	-0.020
07/02/2018	32	-0.140
07/02/2018	66	-0.230
07/02/2018	129	-0.340
07/02/2018	209	-0.500

Start depth 0.00	Depth of Pit 0.500		Diff 0.500	75% full 0.125	25%full 0.375
Length of pit (m) 1.300) Width of pit (m) 0.300			75-25Ht (m) 0.250	Vp75-25 (m3) 0.10
Tp75-25 (from graph) (s)		7320		50% Eff Depth 0.250	ap50 (m2) 1.19
f =	1.119E-05	m/s			

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.40m x 0.35m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
06/02/2018	0	0.000
06/02/2018	10	-0.050
06/02/2018	39	-0.200
06/02/2018	100	-0.360
06/02/2018	148	-0.430
06/02/2018	200	-0.500

Start depth 0.00	Depth of Pit 0.500		Diff 0.500	75% full 0.125	25%full 0.375
Length of pit (m) Width of pit (m) 1.400 0.350				75-25Ht (m) 0.250	Vp75-25 (m3) 0.12
Tp75-25 (from graph) (s)		4920		50% Eff Depth	ap50 (m2)
f =	1.824E-05	m/s		0.230	1.505

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.40m x 0.40m 0.50m (L x W x D)

Date	Time	Water level (m bgl)
06/02/2018	0	0.000
06/02/2018	5	0.000
06/02/2018	70	-0.020
06/02/2018	128	-0.120
06/02/2018	265	-0.130
06/02/2018	321	-0.140

		*Soakaway failed - Pi	t backfilled	
Start depth	Depth of Pit	Diff	75% full	25%full
0.00	0.500	0.500	0.125	0.375

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.30m x 0.35m 0.50m (L x W x D)

Date	Time	Wate (m	er level bgl)
06/02/2018	0	0.000	
06/02/2018	10	-0.080	
06/02/2018	24	-0.120	
06/02/2018	82	-0.210	
06/02/2018	188	-0.300	
06/02/2018	272	-0.360	
06/02/2018	600	-0.500	*Data Extrapolated
			•

Start depth 0.00	Depth of Pit 0.500		Diff 0.500	75% full 0.125	25%full 0.375
Length of pit (m) 1.300) Width of pit (m) 0.350			75-25Ht (m) 0.250	Vp75-25 (m3) 0.11
Tp75-25 (from graph) (s)		16800		50% Eff Depth	ap50 (m2)
f =	5.290E-06	m/s		0.200	1.20

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

Ground Investigations Ireland

St Teresas Lands Temple Hill, Monkstown, Blackrock, Co Dublin

Ground Investigation Report

DOCUMENT CONTROL SHEET

Project Title	t Teresas Lands Temple Hill, Monkstown, Blackrock, Co Dublin							
Engineer	JJ Campbell & Associates							
Project No	8236-11-18							
Document Title	Ground Investigation Report							

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date	
A	Final	G Kelliher	C Finnerty	C Finnerty	Dublin	17 January 2019	

CONTENTS

1.0	Preamble	3
2.0	Overview	3
2.1.	Background	3
2.2.	Purpose and Scope	3
3.0	Subsurface Exploration	3
3.1.	General	3
3.2.	Rotary Boreholes	3
3.3.	Groundwater Monitoring Installations	4
4.0	Ground Conditions	5
4.1.	General	5
4.2.	Groundwater	5
5.0	Recommendations & Conclusions	6
5.1.	General	6
5.2.	Foundations	6
5.1.	Excavations	6

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Rotary Core Records
Appendix 3	Groundwater Monitoring

1.0 Preamble

On the instructions of JJ Campbell & Associates, a site investigation was carried out by Ground Investigations Ireland Ltd., in December 2018 at the site of the proposed residential development at St Teresas Lands Temple Hill, Monkstown, Blackrock, Co Dublin

2.0 Overview

2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. The site is currently greenfield partially vegetated in palaces with a convent building over a portion of the site in Blackrock, Co. Dublin. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 2 No. Rotary Core Boreholes to a maximum depth of 13.5m BGL
- Installation of 2 No. Groundwater monitoring wells
- Groundwater monitoring
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground

Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where

noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit, and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 2 of this Report.

3.3. Groundwater Monitoring Installations

Groundwater and or Gas Monitoring Installation were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Topsoil
- Made Ground
- Cohesive Deposits
- Bedrock

TOPSOIL: Topsoil was encountered in BH-B and was present to a maximum depth of 0.1m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil in BH-B and was present to a depth of 1.0m BGL. These deposits were described generally as *brown sandy gravelly CLAY with frequent cobbles and contained occasional fragments of concrete, red brick, glass and plastic.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown sandy gravelly CLAY with occasional cobbles and boulders* overlying a *stiff black sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm to stiff or stiff below 2.0m BGL in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

BEDROCK: The rotary core boreholes recovered strong to very strong phaneritic Granite in BH-A. The rotary core recovered extremely weak (residual) to Medium strong phaneritic Granite in BH-B.

The depth to rock in BH-A is 8.0m and in BH-B depth to rock is6.8m BGL. The total core recovery is good, typically 100% with some of the uppermost runs dropping to 80 or 90%. The SCR and RQD both are relatively poor in the upper weathered zone, mainly in BH-B, often recovered as non-intact, however both indices show an increase with depth in each of the boreholes.

4.2. Groundwater

No groundwater was noted during the investigation however we would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction and other

factors. For this reason, standpipes were installed in BH-A and BH-B to allow the equilibrium groundwater level to be determined.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

Based on the limited number of investigative points compared to the size of the site, the recommendations are preliminary and should be verified by further ground investigation to ensure the depth of the founding strata don't vary significantly over the area of the proposed building. A previous investigation to complete soakaway testing indicated shallow rock at the location of DS01 which is in the eastern portion of the site closest to the tennis ground.

An allowable bearing capacity in the location of BH-A where a single basement is proposed, of 250 kN/m² is recommended for conventional strip or pad foundations on the stiff cohesive deposits at a depth of 4.0m BGL. An allowable bearing capacity in the location of BH-B, where a double basement is proposed, of 350 kN/m² is recommended for conventional strip or pad foundations on the weak granite at a depth of 8.0m BGL.

In any part of the site, should part of the foundation be on rock we would recommend that all the foundations of the unit in question be lowered to the competent rock stratum to avoid differential settlement. The possibility for variation in the depth of the made ground in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

A ground bearing floor slab is recommended to be based on the stiff cohesive deposits or weak bedrock with an appropriate depth of compacted hardcore specified by the consulting engineer and in accordance with the limits and guidelines in SR21:2014+ A1:2016 and/or NRA SRW CL808 Type E granular stone fill.

5.1. Excavations

Excavations in the Made Ground will require to be appropriately battered or the sides supported due to the low strength of these deposits. Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Any excavations which penetrate the granular or weathered bedrock deposits will require to be appropriately battered or the sides supported and are likely to require dewatering due to the groundwater seepages noted in the exploratory hole logs in the Appendices of this Report.

Generally, where significant excavations are required in water bearing granular deposits a cut-off wall may be more cost effective than extensive dewatering. An assessment by a specialist dewatering contractor is recommended to determine the most cost effective approach to the proposed excavation. A retaining wall is recommended to extend into the intact granite bedrock to enable the construction of the double basement, particularly if the weathered granite is persistent across the basement footprint. The groundwater level is above the basement depth at both locations and dewatering may be required to enable the construction of the basement in a dry environment.

The excavations proposed are estimated to be 8.0m BGL for Block B which will penetrate into the weathered Granite between 6.8m and the base of the excavation. Excavations in the upper cohesive and weathered rock deposits are expected to be excavatable with conventional excavation equipment, with zones of more intact bedrock below this depth requiring specialist techniques. Where the rock is present in such weathered state it should be excavatable with conventional excavation techniques however where more competent rock is encountered specialist hydraulic splitting equipment can be utilised to eliminates shocks and vibrations associated with rock breaking with impact hammers. This technique has been used successfully in the strong granite bedrock in the South Dublin area in the vicinity of existing structures and services. The excavation for Block A may not encounter bedrock which was not found until a depth of 8.0m BGL and therefore should be excavatable with conventional excavation equipment. Large boulders which can be present in the glacial till may require specialist techniques to split and permit excavation and removal from site.

Any material to be removed off site should be disposed of to a suitably licenced landfill.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

Site Location Plan

OS MAP SERIES: 1:1000 / datum - Malin Head OS MAP REF: 3393-03, 3393-02, 3330-22, 3330-23 ITM Centre Point Co-ordinate: X,Y = 721758,729006 Copyright Ordnance Survey Ireland and Government of Ireland Ordnance Survey Ireland License No. AR 0005018 All levels (in meters) are related to Malin Head levelling datum. All dimensions in millimetres. figured dimensions only are to be taken from this drawing. All work to be carried out in accordance with the current building regulations. All dimensions to be checked on site before work is carried out. All consultants are to be notified of any discrepancies. Application site outlined in red (4.55 Ha)

Lands in the ownership of the applicant and/or landowner (3.97 Ha)

Area of land for which consent is being sought that is in the ownership of the Local Authority (DLRCC)

Wayleave Access to be retained

igured dimensions only to be used. This drawing is copyright of O'Mahony Pike Architects Ltd. All information is shared as per	Drawi
pproved use in accordance with BS1192(2007) + A2(2016), Table 5; Standard Codes for Suitability of Models and Documents.	Drousi
'Information Approval Check' is empty, this information has been shared at SO - WIP	Diswi

Revision Description

 \oplus

Date	Rev. No.	Issued by	oima	hon	v niko		Project No.:	1706	Scale @ A1:	1:1,000
			VIIIa		y hive		Project Lead:	DM	Date Printed	19-09-2018
			architecture ur	ban design	Dublin The Chapel	Cork	Drawn By:	DÓS	Current Rev.:	
			tel: +353 1 202 740	0	Mount St. Anne's Milltown, Dublin 6	Cork City Co.Cork	Model No.:	1706-OMP-00-	00-M2-A-XX-0	01000
			www.omahonypike	com	D06 XN52 Ireland	T12 R2RV Ireland	Purpose:	Pre-Planning		
	_	_	Project:	Resider	tial Develop	ment				
		_	Location:	St. Tere	sa's, Temple	Road, Black	rock			
			Client:	Oval Ta	rget Ltd					
Ltd. All information is shared as pe		red as per	Drawing Title:	Site Loo	ation Plan					
itability of N	Aodels and Do	cuments.	Drewing No.:	1706-0	MP-00-000-E	R-A-XX-010	01			School Chaird & Con

APPENDIX 2 – Rotary Core Records

	(Ground Investigations Ireland Ltd					Site Rotary Core. St Teresas' School				iole ber
			1	WV	vw.gii.ie				E	3H-	A
Machine : B	eretta 144		Casing	Diamete	r	Ground Level (mOD)	Client		Jo Ni	ob umb	er
Core Dia: n	nm								823	36-11	1-18
Method : R	otary Core	d	Locatio	n ockrock	Dublin	Dates 01/01/2019	Project Contractor		She		
				ackiock,							
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level Depth (mOD) (m) (Thickness)	Description	Legend	Wateı	Ins	str
0.00	24		-				Poor Recovery of brown slightly sandy gravelly CLAY with occasional gravelly lenses. Driller notes: Stiff brown sandy gravelly Clay	ၜ႞ၟၛႜၟၜၣၟၟၜၣၟၜ႞ၟၛၟၓၣ႞ၟၜၣၟၜၣၟၜၣၟၜ ႞ၟၛၯၓ႞ၟၛၟၓ႞ၟၛၟၓ႞ၭၛၟၓ႞ၭၛၟၓၟ႞ၭ ၜ႞ၹၟ႞ၭၜ႞ၹၟႝႜၓႄ႞ၹၟႜ႞ၭၜ႞ၹၟ႞ႜၜ			14.65 or 10% or 10% of 10\% of
2.30 2.30-2.75	20		_		3,4/6,5,5,5 SPT N=21	2.30 	Poor Recovery of brown black slightly sandy gravelly CLAY with occasional gravelly lenses. Driller notes: Stiff black sandy gravelly Clay	ုိ မိုင်ခြင်ခြင်ခြင် နေ့ကို ရေးစီး လူတို့ ခုမှ နေ့ကို ရေးစီး လူတို့ ကြောင် ကြောင့် ရေးစီး ရေးနိုင်		2010 - 20	<u>ಕ್ರಿತಿಮ್ ಇಲ್ಲಿ ಅಭಿಕಾರಣಿಗಳು ಇಲ್ಲಿ ಇರಿ</u> ಅಕ್ಷ <u>ಿ ಇಲ್ಲಿ ಅಭಿಕಾರ</u> ಹಿರ್ದೆ ಕ್ರಾಂಕ್ಷ್ ಕ್ರಾಂಕ್ಷ್ ಕ್ರಾಂಕ್ಷ್ ಕ್ರಾಂಕ್ಷ್ ಕ್ರಾಂಕ್ಷ ಹಿರ್ಗೆ ಕ್ರಾಂಕ್ಷ್ ಕ್ರಾ
3.70 3.70-3.72	75		_		23,2/50 SPT 25*/10 50/10	(1.10)	Granite BOULDER			10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.36% <u>ort of the of active of active 4.36% ort of active</u> but the second floored the ort of the orthogone of active active to active to a start, to a start, and active active active active to active the start, active active active active active active active a
5.30 5.30-5.75	20		-		4,6/7,5,7,9 SPT N=28		CLAY. Driller notes: Stiff to very stiff black gravelly Clay			19 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 or and a star of a star of a star of a star of a star 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
6.80 6.80-7.25	40	17	17		7,10/8,6,9,7 SPT N=30		Strong to vory strong white grov motified pick				<u>e orientia orientia orientia orientia orientia orientia</u> 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980: 1980
9.80	100	97	97				phaneritic GRANITE, partially to unweathered				તે. અં. જો) બહુી છે. જે જો) બહુી છે. જે જો બહુી છે. જે જે બહુ છે. જો બહુલ જે બહુલ જો બહુલ જે બહુલ જે બહુલ જે બહુલ જે બહુલ જે જે જો બહુલ જો જે જો બહુલ જો બહુલ જે જો બહુલ જે જો બહુલ જે જો બહુલ જો જો બહુલ જો જો બહુલ જો જો બહુલ જો જો જે
Remarks	1	I	1		1			Scale (approx)	L¢ B	ogge y	əd
								1:50		тмі	
								Figure N	ю.	D 1.	
								8236-1	-18	.BH-	٠B

Ground Investigations Ireland Ltd							Site Rotary Core, St Teresas' School			Borehole Number BH-A	
Machine : B	eretta T44		Casing			Cround		Olient			
Flueb .			Casing	Diametei	r	Ground Level (MOD)		Client		N	umber
Coro Dias r	nm									823	36-11-18
	ator Coro	d	Locatio	n		Dates		Project Contractor		S	heet
Method : R		u	Bla	ackrock, [Dublin	01	/01/2019	Ground Investigations Ireland		2/2	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
	100	100	100	2			(5.50)	8.0m - 13.5m Fractures are 40 to 50 degrees, planar, rough, medium to widely spaced, slight staining on fracture surfaces			
11.20	100	100	0				E				
11.30	100	100	100								
	100	100	100				E		+++++++++++++++++++++++++++++++++++++++		
13.50							13.50	Complete at 13 50m			
Remarks									Scale (approx)	L	ogged Y
									1:50		TMI
									Figure N 8236-1	lo. 1-18	.BH-B

GROUND INVESTIGATIONS IRELAND		Grou	nd In	vest	igations Ire	land	Ltd	Site Rotary Core, St Teresas' School			oreh umb 3H-	iole er • B	
Machine : E Flush :	Beretta T44		Casing	Diamete	r	Ground	Level (mOD)	Client			ob umb 36-1)er 1-18	-
Core Dia:	mm Rotary Core	d	Locatio Bla	n ickrock,	Dublin	Dates 11	/12/2018	Project Contractor Ground Investigations Ireland		S	Sheet 1/2		-
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	In	str	
0.00	15						(2.20)	TOPSOIL Driller Notes: MADE GROUND consisting of brown Clay. Recovery consists of medium to coarse Gravel and cobble fragments			0 10.0 0 0.0 0 0 0 10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 of costs 400 - 20 - 2000 00 - 200 - 200 - 2000 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	- Proceedings -
2.30 2.30-2.75	30		-		4,6/6,8,5,7 SPT N=26			Poor Recovery of grey sub rounded to sub angula fine to coarse Gravel with occasional sandy lenses. Driller notes: gravelly cobbly CLAY	하 : : : : : : : : : : : : : : : : : : :			•ब्रिडियेन जर्द व्योज ब्रिडियेन जर्द २३% व्येडियेन जर्द व्योज ब्रिडिये १९७९ वर्ष व्येडियेन द्वेडियेन वर्ष २१% व्येडियेन जर्द व्योज के प्रति १९७९ वर्ष व्येडियेन वर्ष व्येडियेन वर्ष २१% व्येडियेन कर व्योज के प्रति	00 ^ // 00 0 4 00 0 // 00 0 4 00 0 4 00 0 4 00 0 4 00 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4
3.80	40						(4.50)					बर क्रिफ ब्रिडिंग जर क्रिफ ब्रिडिंग के जर क्रिफ ब्रिडिंग जर क्रि जिन्द्र के क्रिफिय के जर क्रिफ ब्रिडिंग के जर क्रिफ ब्रिडिंग जर क्रिफ जिन्द्र के क्रिफिय के जर क्रिफ ब्रिडिंग के जर क्रिफ के जिन्द्र	0. 59 A 40. 10 6 A 10 6 40. 10 6 40. 10 6 40. 10 6 40. 10 6 40. 10 6 40. 10 6 40. 10 6 40. 10 6 40. 10 6 40. 10
5.30 5.30-5.75	27				6,9/9,15,26 SPT N=50							કરે અને જોડા છે. બેરી હતી અને જોડા બેરી હતી અને જોડા જોડા બેરી હતી. જોડા જે અને છે છે છે છે છે. જોડા છે છે છે છે છે છે છે છે છે છે. જોડા જે જોડા છે	0.00 ^ .00 0 00 0 0 0 0 0 0 0 0 0 0 0 0
6.80 6.80-6.82	70	30	10	12	25/50 SPT 25*/10 50/10		6.80 (1.20)	Very weak white brown mottled orange phaneritic GRANITE, distinctly weathered 6.8m - 8.0m - Fractures are sub horizontal 10 to 20 degrees, undulating, rough, closely spaced with sandy infill.				ទ័រ ចាក់ទោះ ស្ម័នរង្គាំ សម័នទៅមកម្មនេះ ទទ័រ ទោះ	0 a . 0. 10 a a 0. 10 a . 0. 10 a a 0. 10 a a 0. 10 a a 0. 10 a
8.00 8.30 9.50 9.80	87	13	7	NI			(1.50)	Exrtemely weak brownish grey GRANITE, residual rock Weak to medium strong white brown mottled orange phaneritic GRANITE, distinctly to partially weathered				and and a set of the s	-0000.00 m2 000.000 000.0000.000.000.000.000.000.0
Remarks	1	I	1		1	1		1	Scale (approx) 1:50 Figure N 8236-1	L B Io. I-18	ogge y TMI	<u>-∞e</u> 3 ∍d 	0

Ground Investigations Ireland Ltd							Site Rotary Core, St Teresas' School	Borehole Number BH-B				
Machine : E Flush :	Beretta T44		Casing	Diamete	r	Ground	Level (mOD)	Client		Je N 82;	ob umber 36-11-18	
Core Dia:	mm Potary Core	Ч	Locatio	n		Dates	/12/2018	Project Contractor			heet	
Method		u	Bla	ackrock, I	Dublin			Ground Investigations Ireland		2/2		
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	
11.30	87	57	50	13			(2.00)	9.5m - 11.5m - Two Fracture sets. F1) 40 to 50 degrees, planar, smooth to rough, close to very close spaced with oxiation on fracture surfaces. F2) Sub horizontal 25 to 35 degrees, undulating, rough, closely spaced				
11.50	100	60	53					Medium strong white brown mottled orange phaeritic GRANITE, partially weathered 11.5m - 13.5m - Two Fracture sets. F1) 40 to				
12.80	100			10			(2.00)	50 degrees, planar, smooth, close spaced with oxiation on fracture surfaces. F2) Sub vertical 60 to 70 degrees, undulating, rough, close to medium spaced and oxidation on fracture surfaces		•		
13.50	100	/1	14				13.50	Complete at 13.50m	*****			
Pomarks												
Remarks	1		1	<u> </u>	1	1	<u> </u>	1	Scale (approx)	L B	ogged y	
									1:50		тмі	
									Figure I 8236-1	lo. 1-18	3.BH-B	

St Teresas' School, Blackrock – Rotary Core Photographs

BH-A – Box 1 of 3

BH-A – Box 2 of 3

BH-B – Box 1 of 3

BH-A – Box 3 of 3

BH-B – Box 3 of 3

BH-B – Box 2 of 3

APPENDIX 3 – Groundwater Monitoring

GROUNDWATER MONITORING

St Teresa's Blackrock

BOREHOLE	DATE	TIME	GROUNDWATER (mBGL)	Comments
вна	14/01/2019	11.00	1.02	
внв	14/01/2019	11.15	3.74	

GROUNDWATER MONITORING

St Teresa's Blackrock

BOREHOLE	DATE	TIME	GROUNDWATER (mBGL)	Comments
вна	14/01/2019	11.00	1.02	
внв	14/01/2019	11.15	3.74	

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

Ground Investigations Ireland

St. Teresa's Lands Temple Hill, Monkstown

Blackrock, Co Dublin

Ground Investigation Report

December 2020

Directors: Fergal McNamara (MD), James Lombard, Conor Finnerty, Aisling McDonnell & Barry Sexton Ground Investigations Ireland Limited | Registered in Ireland Company Regsitration No.: 405726

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	St. Teresa's Lands Temple Hill, Monkstown, Blackrock, Co Dublin
Engineer	JJ Campbell & Associates
Client	Oval Target Ltd
Project No	10069-10-20
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
В	Final	E Byrne	S Kealy	C Finnerty	Dublin	16 December 2020

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

1.0	Preamble4
2.0	Overview4
2.1.	Background4
2.2.	Purpose and Scope4
3.0	Subsurface Exploration4
3.1.	General4
3.2.	Trial Pits5
3.3.	Slit Trenching5
3.4.	Cable Percussion Boreholes5
3.5.	Rotary Boreholes6
3.6.	Surveying6
3.7.	Groundwater Installations
3.8.	Laboratory Testing7
4.0	Ground Conditions7
4.1.	General7
4.2.	Groundwater8
4.3.	Laboratory Testing8
4.3.1.	Chemical Laboratory Testing8
4.3.2.	Rock Laboratory Testing
5.0	Recommendations & Conclusions9
5.1.	General9
5.2.	Foundations9
5.3.	Excavations9

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Trial Pit Records
Appendix 3	Cable Percussion and Rotary Core Records
Appendix 4	Slit Trench Records
Appendix 5	Laboratory Testing

1.0 Preamble

On the instructions of JJ Campbell & Associates, a site investigation was carried out by Ground Investigations Ireland Ltd., November 2020 at the site of the proposed residential development at St Teresa's Lands Temple Hill, Monkstown, Blackrock, Co Dublin.

2.0 Overview

2.1. Background

The proposed development comprises 493 residential units with underground car parkingand the relocation of exisiting Gate Lodge.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 6 No. Trial Pits to a maximum depth of 3.20m BGL
- Carry out 6 No. Slit Trenches to ascertain existing service details
- Carry out 3 No. Cable Percussion boreholes to a maximum depth of 2.50m BGL
- Carry out 2 No. Rotary Core Boreholes to a maximum depth of 8.50m BGL
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a JCB 3CX excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by an Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Slit Trenching

The slit trenches were excavated using a JCB 3CX excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The soil was slowly stripped using a spotter on the trench to alert the driver if any services were seen, to avoid damage to any underlying services. The slit trenches were sampled, logged and photographed by an Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the slit trench records which are provided in Appendix 4 of this Report.

3.4. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata.

Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the

test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 3 of this Report.

3.5. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit, and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 3 of this Report.

3.6. Surveying

The exploratory hole locations have been recorded using a Trimble R10 GNSS System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.7. Groundwater Installations

A Groundwater Monitoring Installation was installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.8. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical testing to assist in the classification of soils and to provide information for the proposed design.

Chemical testing as required by the specification, including the pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer tests were carried out in NMTL's Geotechnical Laboratory in Carlow. Specialist shear strength testing consisting of quick undrained, consolidated undrained triaxial, shear box and consolidation testing was carried out on undisturbed U100 or piston samples where recovered.

Rock strength testing including Point Load (Is₅₀) and Unconfined Compressive Strength (UCS) testing was carried out in James Fischer's Geotechnical Laboratory. The results of the laboratory testing are included in Appendix 5 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Topsoil/Surfacing
- Made Ground
- Granular Deposits
- Cohesive Deposits
- Bedrock

TOPSOIL: Topsoil was encountered in most of the exploratory holes and was present to a maximum depth of 0.40m BGL. Tarmac surfacing was present typically to a depth of 0.10m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil/Surfacing and were present to a relatively consistent depth of between 0.70m and 1.20m BGL. These deposits were described generally as *brown slightly sandy slightly gravelly Clay with occasional fragments of red brick.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown/light brown slightly sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

GRANULAR DEPOSITS: The granular deposits were encountered at the base of the cohesive deposits and were typically described as *Grey/brown clayey sandy sub rounded to sub angular fine to coarse GRAVEL with occasional cobbles and rare boulders*. The secondary sand/gravel and silt/clay constituents varied across the site and with depth while occasional or frequent cobble and boulder content also present where noted on the exploratory hole logs.

Based on the SPT N values the deposits are typically dense. It should be noted that many of the trial pits where granular deposits were encountered, experienced instability. This was described either as side wall spalling or as side wall collapse in the remarks section at the base of the trial pit logs.

BEDROCK: The rotary core boreholes recovered *Medium strong to strong light brownish grey coarsely crystalline GRANITE*.

The depth to rock varies from 2.10m BGL in BH03 to a maximum of 5.05m BGL in BH02. The total core recovery is good, typically 100% with some of the uppermost runs dropping to 80 or 90%. The SCR and RQD both are relatively poor in the upper weathered zone, often recovered as non-intact, however both indices show an increase with depth in each of the boreholes.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, a standpipe was installed in BH2019 allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 6 of this Report.

4.3. Laboratory Testing

4.3.1. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.3.2. Rock Laboratory Testing

The rock testing carried out on samples recovered from the boreholes reported point load testing gave Is_{50} values ranging between 1.66 to 1.93 MPa. The Is_{50} results correlate to the UCS values using a factor of approximately 20, giving values of 33.2 MPa and 38.6 MPa. The results from the completed laboratory testing is included in Appendix 5 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

An allowable bearing capacity of 250 kN/m² is recommended for conventional strip or pad foundations on the dense granular deposits at a depth of 4.0m BGL at the location of BH02. Should a higher bearing capacity be required at this depth we would recommend an allowable bearing capacity of 1000 kN/m² on the medium strong Granite deposits encountered at 5.0m BGL. Where the granite deposits are shallower, such as at the location of BH03 an allowable bearing capacity of 1000 kN/m² is recommended on the medium strong Granite deposit at a depth of 2.10m BGL.

In any part of the site, should part of the foundation be on rock we would recommend that all the foundations of the unit in question be lowered to the competent rock stratum to avoid differential settlement.

The pH and sulphate testing completed on samples recovered from the exploratory holes indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. No special precautions are required for concrete foundations to prevent sulphate attack. The samples tested were below the limits of DS1 in the BRE Special Digest 1:2005.

5.3. Excavations

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Excavations in the Made Ground or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.

Excavations in the upper cohesive and weathered rock deposits are expected to be excavatable with conventional excavation equipment, with zones of more intact bedrock below this depth requiring rock breaking techniques. If rock breaking is required, we would recommend carrying out a rock rippability test or trial excavation.

Any waste material to be removed off site should be disposed of to a suitably licenced landfill.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

721800E

APPENDIX 2 – Trial Pit Records

S	Grou	nd Inv	vestigations www.gii.ie	Ltd	Site St. Teresa's Lands, Temple	e Hill, Blackrock	Trial Pit Number TP01	
Machine : J	CB 3CX rial Pit	Dimensio 3.00x0.6	5x3.20m	Ground	Level (mOD) 14.75	Client		Job Number 10069-10-20
		Location 721	783.8 E 729097.2 N	Dates	9/11/2020	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
				14.45	(0.30) 0.30	Brown slightly sandy sligh	ily gravelly TOPSOIL	
0.50	В				 (0.90)	red brick fragments	siignuy sandy gravelly Clay (WIT
1.00	В			13.55	1.20 (0.50)	Soft light brown slightly sa	ndy slightly gravelly CLAY	
2.00	B			13.05	 1.70	Brown clayey very sandy f subrounded GRAVEL with	ine to coarse angular to some cobbles and boulder	5
2.00					(1.50)			
				11.55	3.20	Complete at 3.20m		
Plan .		•			· . ·	Remarks Trial Pit collapsing from 1.7()m BGL	
		•		-		No groundwater encountere Trial Pit backfilled upon com	d pletion	
· .								
· ·	· ·		· · ·	•	· ·			
					s	scale (approx) 1:25	Logged By EB	Figure No. 10069-10-20.TP01

S	Grou	ind Inv	estigatio www.gii.i	ns Ireland e	Ltd	Site St. Teresa's Lands, Temple Hill, Blackrock			
Machine:J Method :⊤	CB 3CX rial Pit	Dimensio 2.80x0.65	ns 5x3.00m	Ground	I Level (mOD) 16.81	Client		Job Number 10069-10-20	
		Location 7218	01.6 E 729069.6	N Dates	9/11/2020	Engineer JJ Campbell & Associates		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords Level (mOD)	Depth (m) (Thickness)	D	Legend S		
					 (0.35)	Brown slightly sandy sligh	tly gravelly TOPSOIL		
				16.46	0.35 - 0.35 - (0.35)	MADE GROUND: Brown s red brick fragments	slightly sandy gravelly Clay v	vith	
				16.11	0.70	Grey/brown very clayey sa subrounded GRAVEL with	andy fine to coarse angular t some cobbles and boulders	0 5	
				15.67		Grey clayey very sandy fir	e to coarse angular to		
						subrounded GRAVEL with	some cobbles and boulders	$ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{$	
					(1.80)				
				13.8 [,]		Complete at 3.00m			
Plan					· · · ·	Remarks			
						No groundwater encountere Trial Pit backfilled upon com	d pletion		
					•••				
· ·	· ·		· ·	· ·	· · ·				
						Scale (approx)	Logged By	Figure No.	
						1:25	EB	10069-10-20.TP02	

S	Grou	nd Inv	estigations www.gii.ie	Ireland	Ltd	Site St. Teresa's Lands, Temple	Trial Pit Number TP03	
Machine:J Method :T	CB 3CX rial Pit	Dimensio 3.00x0.65	ns 5x3.10m	Ground	Level (mOD) 16.96	Client		Job Number 10069-10-20
		Location 7218	24.9 E 729058.9 N	Dates	9/11/2020	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Kater Kater
				16.86	(0.10) 0.10 (0.25) 0.35	TARMACADAM MADE GROUND: Brown of crushed rock FILL MADE GROUND: Grev/br	grey angular fine to coarse own slightly sandy gravelly (
0.50	В			16 16	(0.45)			
1.00	в				(0.30)	Grey/brown clayey very sa subrounded GRAVEL with	andy fine to coarse angular f some cobbles and boulders	0 5 •••••••••••••••••••••••••••••••••••
2.00	В			15.86		Grey very sandy fine to co GRAVEL with some cobble	arse angular to subrounded es and boulders	
Plan .	· ·				^ı	Remarks		
						Trial Pit stable No groundwater encountere Trial Pit backfilled upon corr	d Ipletion	
	 		· · · ·					
						Scale (approx)	Logged By	Figure No.
						1:25	EB	10069-10-20.TP03

S	Grou	nd Inv	estigations www.gii.ie	s Ireland	Ltd	Site St. Teresa's Lands, Temple	Trial Pit Number TP04	
Machine : Jo Method : T	CB 3CX rial Pit	Dimensio 2.50x0.65	ns 5x3.10m	Ground	Level (mOD) 18.46	Client		Job Number 10069-10-20
		Location 7218	55.2 E 729021 N	Dates	9/11/2020	Engineer JJ Campbell & Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	s Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
				40.00	(0.40)	Brown slightly gravelly TO	PSOIL	
0.50	В			18.06	(0.45)	MADE GROUND: Brown s gas pipe	slightly sandy gravelly Clay w	ith a
1.00	В			17.61	0.85 (0.35)	Stiff reddish brown slightly	sandy gravelly CLAY	
2.00	В			17.26	(1.90)	Stiff grey/brown slightly sa angular to subrounded col	ndy gravelly CLAY with some	
Plan					'	Remarks		
						No groundwater encountere Trial Pit backfilled upon com 0.10m diameter Gas Pipe en	d pletion ncountered at 0.55m BGL	
 	 		· · ·		· · ·			
						Scale (approx) 1:25	Logged By EB	Figure No. 10069-10-20.TP04

S		Grou	ind In	vestig www	ations l gii.ie	d	Site Trial P St. Teresa's Lands, Temple Hill, Blackrock TP0					
Machine Method	: JC : Tri	B 3CX al Pit	Dimensi 2.80x0.0	ons 65x2.80m		Groun	d Le 17.	vel (mOD) 84	Client			Job Number 10069-10-20
			Location 721	1 1842.7 E 72	9036.2 N	Dates	09/11	/2020	Engineer JJ Campbell & Associates			Sheet 1/1
Depth (m)		Sample / Tests	Water Depth (m)	Fiel	d Records	Level (mOD) (т	Depth (m) hickness)	Description			Legend X
								(0.30)	Brown slightly gravelly TO	PSOIL		
						17.5	54 <u>-</u>	0.30 (0.30)	MADE GROUND: Brown s gas pipe	slightly sandy gravelly Clay v	vith a	
						17.2	24	0.60	POSSIBLE MADE GROUI Clay with occasional subre	ND: Brown slightly sandy gra bunded cobbles	velly	
						16.0		(0.40)				
						10.0		- 1.00	Stiff brown slightly sandy g to subrounded cobbles an	ravelly CLAY with some ang d boulders	gular :	· · · · · · · · · · · · · · · · · · ·
								(0.50)			4 	· · · · · · · · · · · · · · · · · · ·
						16.3	14	- 1.50	Grey/brown very clayey sa subrounded GRAVEL with	andy fine to coarse angular t many cobbles and boulders	0	
											- - - -	
								(1.30)				
								-			- - - - -	
											- - - -	
						15.0)4	2.80	Complete at 2.80m			<u>, 0 0 4</u>
							-	_				
								-				
Plan				•	· ·			- •	Remarks			
									No groundwater encountere Trial Pit backfilled upon com	d pletion		
									Scale (approx)	Logged By	Figure	No.
									1:25	EB	10069-	10-20.TP05

St. Teresa's Temple Hill Blackrock Trial Pit Photographs

TP01

TP02

TP03

TP03

TP04

TP05

TP05

APPENDIX 3 – Cable Percussion & Rotary Borehole Records

S	Grou	nd In	vesti	gations Ire		Site St. Teresa's Lands, Temple Hill, Blackrock	Boreho Numbe	ole er 1		
		1	~~~	w.gii.ie						-
Machine : Da	ando 2000 able Percussion	Casing 20	Diamete Omm to 2	r .20m	Ground	Level (13.41	(mOD)	Client	Job Numbe 10069-10	er 0-20
		Locatio	n 1730.9 E	729092.2 N	Dates 09	/11/202	20	Engineer JJ Campbell & Associates	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Der (n (Thick	pth n) (ness)	Description	Legend	Water
0.50 0.80 1.00-1.45 1.30 2.00-2.20	B SPT(C) N=9 B SPT(C) 50/50			1,2/2,2,2,3	13.21 12.96 12.41 11.71 11.21		(0,20) (0.22) (0.25) (0.30) (0.75) (0.25) 1.00 (0.70) 1.70 (0.50) 2.20	TARMACADAM Grey angular fine to coarse crushed rock FILL MADE GROUND: Grey slightly sandy fine to coarse angular Gravel MADE GROUND: Dark grey sandy slightly gravelly Clay MADE GROUND: Brown slightly sandy gravelly Clay with red brick fragments Stiff brown sandy slightly gravelly CLAY with occasional subrounded cobbles Complete at 2.20m		
Remarks Chiselling fro	om 2.20m to 2.20m fo	or 1 hour.						Scale (approx) 1:50	Logge By EB	d
								Figure N	lo. 0 20 вца	01

		Grou	nd In	vesti wv	gations Ire /w.gii.ie	land	Ltd	Site St. Teresa's Lands, Temple Hill, Blackrock	Borehole Number BH02
Machine : D B	Dando 2000 Beretta T44) &	Casing	Diamete	r 30m	Ground	Level (mOD)	Client	Job Number
Method : C	Cable Percu Rotary Corii	ussion & ng	10	0mm to 8	.50m		-		10069-10-20
			Locatio	n 1805.6 E	729061.8 N	Dates 05 11	5/11/2020- 1/11/2020	Engineer JJ Campbell & Associates	Sheet 1/1
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Xater
0.60 1.00-1.45 1.30 2.00 2.00-2.30 2.30 3.50-3.95 3.50	B SPT(C) B B SPT(C) TCR 48	N=34 50/150 SCR	RQD	FI	6,7/6,9,10,9 10,18/20,22,8 8,14/14,17,19 SPT N=50	17.07 16.80 16.55 16.00 14.80	0.03 (0.27) 0.30 (0.25) (0.55) (0.55) (0.55) (0.55) (0.55) (0.55) (0.52) (0.55) (0.55) (0.52) (0.55) (0.55) (0.55) (0.26) (0.27) (0.26) (0.27) (0.26) (0.27) (0.26) (0.25) (0.27) (0.25) (0.25) (0.26) (0.27) (0.25) (0.25) (0.26) (0.26) (0.27) (0.25) (0.26) (0.27) (0.25) (0.25) (0.26) (0.26) (0.26) (0.26) (0.27) (0.26) (0.25) (0.26)	TARMACADAM Grey angular fine to coarse crushed rock FILL MADE GROUND: Grey slightly sandy fine to coarse angular Gravel Brown/grey slightly sandy gravelly CLAY Stiff brown sandy slightly gravelly CLAY with occasional subrounded cobbles Poor recovery. Recovery consists of dark brown to grey slightly sandy fine to coarse subangular to subrounded Gravel. Driller notes brown sandy gravelly Clay (Very Stiff). Poor recovery. Recovery consists of fine to coarse eubangular to subrounded Gravel. Driller notes brown sandy gravelly Clay (Very Stiff).	
5.00-5.45 5.00 5.05	83	43	21	10	10,12/12,38 SPT N=50	12.05	(1.55)	 subangular to subrounded Gravel with frequent cobbles and boulder fragments. Driller notes brown sandy cobbly Gravel (Dense). Medium strong to strong light brownish grey coarsely crystalline GRANITE. Partially weathered. 5.05m - 6.50m BGL: 2 Fracture sets. F1: 5 - 10 degrees, very closely to closely spaced, undulating, rough, clay smearing, orange oxidation staining. F2: 25 - 35 degrees, closely spaced, undulating to planar, rough, clay smearing, orange oxidation staining. 	
6.50 8.00 8.50	98	55	47 46	7		8.60	(2.00)	Strong light brownish grey coarsely crystalline GRANITE. Partially weathered. 6.50m - 8.50m BGL: 2 Fracture sets. F1: 5 - 30 degrees, closely to widely spaced, undulating, rough, clay smearing, orange oxidation staining. F2: 70 - 80 degrees, closely to widely spaced, undulating to planar, rough, clay smearing, orange oxidation staining. 7.27m - 7.36m BGL: Non intact zone. Complete at 8.50m	
Remarks Cable percu Borehole co Plain pipe w cover. Chiselling fre	ussion to 2. mplete at 8 vith bentoni om 2.30m t	30m BGL. 3.50m BGI te seal fro to 2.30m f	Rotary co	ore follow	on from 2.30m to 8.5 L, slotted pipe with pe	i0m BGL. ea gravel s	surround from	1.00m BGL to 8.50m BGL. Finished with a flush 1:50 Figure 10069-	EB & JMD No.

Ground Investigations Ireland Ltd									Site St. Teresa's Lands, Temple Hill, Blackrock			ole er 3
Machine : Dando 2000 & Beretta T44			Casing Diameter			Ground Level (mOD)			Client			er
Method : Cable Percussion &			200mm to 2.10m 100mm to 6.50m			17.54		•			10069-10	0-20
			Location 721850.1 E 729033.6 N			Dates 03/11/2020- 11/11/2020		020- 020	Engineer JJ Campbell & Associates		Sheet 1/1	
Depth (m)	Sample / Tests		Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Level Depth (mOD) (m) (Thickness)		Description	۱		Water
0.40 0.80 1.00-1.45	B B SPT(C) N=48 B				4,6/6,11,14,17	17.44 16.84 16.54 15.94 15.44		0.10 (0.60) 0.70 (0.30) 1.00 (0.60) 1.60 (0.50) 2.10	Brown slightly sandy TOPSOIL MADE GROUND: Brown slightly sandy slightly gra Clay with red brick fragments Light brown slightly sandy slightly gravelly CLAY Stiff brown slightly sandy gravelly CLAY with occas subrounded cobbles	sional		
2.00-2.41 2.30	SPT(C) 50/260 B		DDD		11,15/15,15,15,5 25/50				Medium strong light brownish grey coarsely crystalline GRANITE. Partially to distinctly weathered		******	
2.50-2.51 2.50 3.00 3.34 3.50 3.79 4.24 5.00 5.50	100 100 93	SCR 46 25 74	RQD 26 7 74	FI 4 NI 4 NI 7	SPT(C) 25*/10 50/0	12.89		(2.55) 4.65 (1.85)	 2.50m - 5.50m BGL: 3 Fracture sets. F1: 5 - 10 degrees, closely to medium spaced, undulating, clay smearing, orange oxidation staining. F2: 40 degrees, medium to widely spaced, undulating, r clay smearing, orange oxidation staining. F3: 65 degrees, medium to widely spaced, undulating to planar, rough, clay smearing, orange oxidation s Strong light brownish grey coarsely crystalline GR Partially weathered. 5.50m - 6.50m BGL: 1 Fracture set at 65 - 80 de medium to widely spaced, planar to undulating, r slight clasy smearing, orange oxidation staining. 	roguh, - 50 rough, - 80 o taining. ANITE. grees, rough,		
6.50				3		11.04		6.50	Complete at 6.50m			
Remarks Cable percussion to 2.10m BGL. Rotary core follow on from 2.10m to 6.50m BGL. Borehole complete at 6.50m BGL.											Logge By	d
Chiselling from 2.50m to 2.50m for 1 hour.											EB & JN	٨D
											Figure No. 10069-10-20.BH03	

St. Teresas Lands Temple Hill Blackrock – Rotary Core Photographs

BH02

BH03

APPENDIX 4 – Slit Trench Records

Geotechnical & Environmental

Checked: Initials SK

St. Teresa's Temple Hill Blackrock Slit Trench Photographs

ST01

ST01

ST02

ST02

ST03

ST03

ST03

ST05

ST05

ST05

ST05

ST06

ST06

APPENDIX 5 – Laboratory Testing

National Materials Testing Laboratory Ltd.

							50141147							
				Particle			Index Pro	perties	Bulk	Cell	Undrained Tria	xial Tests	Lab	
BH/TP	Depth	Sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
TP01	2.00	В	9.9		9.7	37	26	11						
TP04	2.00	В	9.9		35.9	34	19	15						
								l			<u> </u>			
								l			<u> </u>			
ΝΜΤΙ		Notes :	1	<u> </u>	1		1	1	1	l	lob ref No	NMTL 3329	GII Project ID:	10069-10-20
	-	110165.	1. All BS to	ests carried	d out using r	oreferred (definitive) (method ur	less otherw	ise stated	Location	St Teresa'	S	10000-10-20
		1											-	

SUMMARY OF TEST RESULTS

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland ac-MR Attention : Conor Finnerty Date : 26th November, 2020 Your reference : 10069-10-20 Our reference : Test Report 20/15944 Batch 1 St Teresas, Temple Hill, Blackrock Location : Date samples received : 13th November, 2020 Status : Final report 1 Issue :

One sample was received for analysis on 13th November, 2020 of which one was scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

b lun

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Element Materials Technology

Client Name: Reference: Location: Contact: EMT Job No: Ground Investigations Ireland 10069-10-20 St Teresas, Temple Hill, Blackrock Conor Finnerty 20/15944 Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	1								
Sample ID	TP01								
Depth	2.00						Please see attached notes for all abbreviations and acronyms		
COC No / misc									
Containers	т								
Sample Date	09/11/2020								
Sample Type	Soil								
Batch Number	1								Mathad
Date of Receipt	13/11/2020						LOD/LOR	Units	No.
Sulphate as SO4 (2:1 Ext) #	0.0081						<0.0015	g/l	TM38/PM20
pH [#]	8.51						<0.01	pH units	TM73/PM11

Element Materials Technology

Client Name:Ground Investigations IrelandReference:10069-10-20Location:St Teresas, Temple Hill, BlackrockContact:Conor Finnerty

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
				•	No deviating sample report results for job 20/15944	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/15944

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/15944

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Element Materials Technology

EMT Job No: 20/15944

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

Laboratory Test Report Point Load Strength Index

Project : Client : Originator	St. Teresa's Ground Inve Catherinest Newcastle, Conor Finne	Lands, To estigation own Hou Co. Dubli erty	emple Hil ns Ireland ise, Hazel in	l hatch Rc	bad	Job Num Lab Ref Date Rec Date Tes Date Re	nber No ceived sted ported	10069-1 ST 98624 08/12/2 09/12/2 10/12/2	0-20 4 020 020 020			
Point Load Strength Index												
Sample No:-	Depth (m)	Description	Type	Orientatior	W (mm)	D (mm)	P (kN)	De ² (mm²)	De (mm)	ls	ц	l _{s(50)} MN/m²
BH03	2.59-2.68	1	D	\bot	100.0	63.5	7.00	4032	63.5	1.736	1.11	1.93
BH03	2.79-2.86	1	D	\bot	135.0 63.5		6.00	4032	63.5	1.488	1.11	1.66
Description	3:											
					I _{s(50)} MN	/m² for	Descri	ption 1	Descri	ption 2	Descri	otion 3
					М	in	1.	66				
					Me	an av	1.80					
Test A = axial D = diametrical					Relationship to planes of weakness IL = irregular lump ⊥ = perper II = parallel			endicular				
Extromoly	Voak					I _{s(50)} №	1N/m²		U.C.S.	MN/m²		
Very Weak	vean					0.05	-0.20		1.0	-5.0		
Weak					0.20	-0.50		5.0-	25.0			
Medium Str	ong					0.50	-2.00		25	-50		
Strong						2.00	-4.50		50-	100		
Very Strong						4.50)-9.00		100	-250		
Extremely Strong					9.00 +			>2	50			

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ireland

1-2-2

□ James Ward, Operations Manager

Appendix N – Civil Infrastructure Report

F1 Nutgrove Office Park, Dublin 14 tel: 01 2980538, fax: 01 2963956, e-mail info@jjc.ie, www.jjc.ie

CIVIL INFRASTRCUTURE REPORT

DOCUMENT CONTROL SHEET

Client	Oval Target Ltd.												
Project Title	St Teres'a L	St Teres'a Lands Temple Hill, Monkstown, Blackrock, County Dublin.											
Document Title	Infrastructure Report												
Document No.	2011-07 - Ir	2011-07 - Infrastructure Report											
This Document	DCS	тос	Text	List of Tables	List of Figures	No. of Appendices							
Comprises	1	1	8	-	-	0							

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
P1	Planning	MW	JJC	JJC	Dublin	February 2021
P2	Planning	MW	JJC	JJC	Dublin	December 2021
1 TABLE OF CONTENTS

D	OCU	MENT CONTROL SHEET	C
1	TAE	BLE OF CONTENTS	1
1	INT	RODUCTION	2
2	CIVI	IL WORKS	2
2.	1	GENERAL	2
2.	2	STORMWATER.	2
2.	3	FOUL DRAINAGE	3
2.	4	WATER DISTRIBUTION	4
2.	5	ROADS, FOOTPATHS AND CARPARKS	4

1 INTRODUCTION

J.J. Campbell & Associates were instructed by Oval Target Ltd. to design the necessary drainage systems, water distribution, road build-up and surface carparking for a planning application for a proposed residential Development at St. Teresa's Lands Temple Hill, Monkstown, Blackrock, County Dublin.

2 CIVIL WORKS.

2.1 GENERAL.

This section covers the Civil works associated with the following areas: drainage systems, water Distribution, footpaths, and all underground work associated with the distribution of site services.

Details of existing utilities were obtained from Irish Water record drawings. A topographical survey and survey of underground utilities was carried out by Murphy Surveys Itd. The exact position of all sewers and culverts is subject to verification at construction stages.

2.2 STORMWATER.

Site stormwater drains have been designed using the modified rational method and taking account of the Greater Dublin Strategic Drainage Study, the Greater Dublin Regional Code of Practice for Drainage Works, Irish Water publication "Code of Practice for Wastewater Infrastructure, Connections and Developer Services, Design and Construction requirements for self-lay Developments" and CIRIA C753, The SUDS Manual. Causeway Storm Water Analysis software has been used to design the storm network.

Pipes will be precast concrete, flexibly jointed, or unplasticised polyvinyl chloride (uPVC), flexibly jointed, and laid in granular bed and surround. For design purposes, a Colebrook-White friction factor K=0.6mm will be used. Manholes shall be cast insitu or precast concrete. Gully chambers shall be precast concrete. Manhole covers and gully gratings shall be cast-iron, designed for heavy traffic use. The principles of Sustainable Urban Drainage Systems, local authority and Irish Water requirements will be incorporated into the drainage design.

2

Stormwater drainage attenuation calculations have been provided in annex D in the main drainage planning report.

A petrol interceptor will be provided for underground carparks.

Storm-water attenuation calculations have been carried out in accordance with the Greater Dublin Strategic Drainage Policy. The calculated volume of attenuation is 1600m³, including a 20% allowance for climate change. The maximum allowable discharge from the site is 8.17 litres/sec.

Surface water drainage calculations are included in Annex E and Annex F in the main drainage planning report.

The site drainage will connect to the existing public sewer in Temple Road. The final manhole, local to each building, will be trapped as required by GDSDS before discharge to the system.

A Flood Risk Assessment has been carried out by JBA Consulting Engineers; the report is included in Annex H in the main drainage planning report.

2.3 FOUL DRAINAGE.

Domestic effluent will discharge to the existing foul drainage system in Temple Road. Pipelines will be designed to provide self cleansing velocities. Pipe will be pre-cast concrete, flexibly jointed, or unplasticised polyvinyl chloride (uPVC), flexibly jointed, and laid in granular bed and surround. For design purposes, a Colebrook-White friction factor K=1.5mm will be used. Manholes shall be cast insitu or pre-cast concrete. Manhole covers shall be cast-iron, designed for heavy traffic use.

Foul water drainage calculations have been included in section 3.0 in the main drainage planning report. Calculations are based on a flow rates given in Irish Water Code of Practice for Waste Water, and a peaking factor of 6. Occupancy is based on number of bed units provided. Foul water will be discharge to the existing 1200mm diameter combined sewer in Temple Road via an existing 300mm connection. The layout is described in drawings C2-0 to C2-6.

All existing drains will be surveyed prior to construction of the on-site drainage system to confirm the above invert level.

3

2.4 WATER DISTRIBUTION.

A new distribution 200Ø (Inside diameter) watermain is proposed for the development, which will to be connected to the existing IW 400Ø watermain on Temple Hill Road.

The existing watermain supplying the adjacent St. Catherine's lands will be replaced along the length of the St. Teresa's avenue as this main was laid in 1943 and is approaching the end of its useful life. All works will comply with Irish Water publication "Water Infrastructure Standard Details, Connections and Developer Services, Construction Requirements for Self-Lay Developments".

2.5 ROADS, FOOTPATHS AND CARPARKS.

All roads within the development shall be designed in accordance with RT 181 – Geometric Design Guidelines for Roads and local authority requirements. Pavement construction will typically be designed to DOE specification for road works standard, based upon California Bearing Ratio tests (BS 1377, Part 4: Section 7), carried out on typical soil samples obtained from the site.